984 resultados para Electro-mechanical


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. Although the same expres

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical behaviour of a composite of Al–5Cu matrix reinforced with 15% SiC particles was studied at different strain rates from 1×10−3 to 2.5×103 s−1 using both a conventional universal testing machine (for low strain-rate tests) and a split Hopkinson bar (for tests at dynamic strain rates). Whilst the yield stress of the composite increases as the strain rate increases, the maximum flow stresses, 440 MPa for compression and 450 MPa for tension, are independent of strain rate. The microstructures and defect structures of the deformed composite were studied with both scanning electron microscopy and transmission electron microscopy and were correlated to the observed mechanical behaviour. Fracture surface studies of samples after dynamic tensile testing indicates that failure of the composite is controlled by ductile failure of the aluminium matrix by the nucleation, growth and coalescence of voids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

微电子机械系统(MEMS)技术的迅速崛起,推动了所用材料微尺度力学性能测试技术的发展.首先按作用方式将实验分成压痕/划痕、弯曲、拉伸、扭转四大类,系统介绍检测MEMS材料微尺度力学性能的微型试样、测试方法及其实验结果.测试材料主要有硅、氧化硅、氮化硅和一些金属.实验结果主要包括基本的力学性能参数如弹性模量、残余应力、屈服强度、断裂强度和疲劳强度等.最后,简要分析了未来的发展需求.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline materials are characterized by a typical grain size from 1 to 100nm. In order to study the nanocrystalline properties of nanocrystalline materials, we chose nanocrystalline coppers as the research object. The uniaxial tensile deformation of computer produced nanocrystalline coppers is simulated by using molecular dynamics with Finnis-Sinclair potential. The mean grain size of simulated nanocrystalline coppers is varied within the 5.38 to 1.79 nm range. The strength, Young's modulus and stress-strain are strongly depended on the grain size and nanocrystalline structure. The simulated nanocrystalline coppers show a reverse Hall-Petch effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using high-resolution electron microscopy, localized solid-state amorphization (SSA) was observed in a nanocrystalline (NC) Al solid solution (weight per cent 4.2 Cu, 0.3 Mn, the rest being Al) subjected to a surface mechanical attrition treatment. It was found that the deformation-induced SSA may occur at the grain boundary (GB) where either the high density dislocations or dislocation complexes are present. It is suggested that lattice instability due to elastic distortion within the dislocation core region plays a significant role in the initiation of the localized SSA at defective sites. Meanwhile, the GB of severely deformed NC grains exhibits a continuously varying atomic structure in such a way that while most of the GB is ordered but reveals corrugated configurations, localized amorphization may occur along the same GB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline (nc) materials are characterized by a typical grain size of 1-100nm. The uniaxial tensile deformation of computer-generated nc samples, with several average grain sizes ranging from 5.38 to 1.79nm, is simulated by using molecular dynamics with the Finnis-Sinclair potential. The influence of grain size and temperature on the mechanical deformation is studied in this paper. The simulated nc samples show a reverse Hall-Petch effect. Grain boundary sliding and motion, as well as grain rotation are mainly responsible for the plastic deformation. At low temperatures, partial dislocation activities play a minor role during the deformation. This role begins to occur at the strain of 5%, and is progressively remarkable with increasing average grain size. However, at elevated temperatures no dislocation activity is detected, and the diffusion of grain boundaries may come into play.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coatings of TiCp reinforced composite have been produced by laser cladding. Two kinds of coating with different TiCp origins were investigated, i.e. undissolved TiCp and in situ TiCp. For undissolved TiCp, epitaxial growth of TiC, precipitation of CrB, and a chemical reaction occur at phase interfaces, and nanoindentation loading curves show pop in marks caused by the plastic deformation associated with crack formation or debonding of TiCp from the matrix. As for in situ TiCp, no pop in mark appears. Meanwhile, in situ TiCp produces hardness and elastic modulus values that are higher than those produced by the coating that contains undissolved TiCp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation microstructure of face-centered cubic cobalt subjected to surface mechanical attrition treatment was studied as a function of strain levels. Strain-induced gamma --> epsilon transformation and twinning deformation were evidenced by transmission electron microscopy and were found to progress continuously in ultrafine and nanocrystalline grains as the strain increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium carbide particle (TiCp) reinforced Ni alloy composite coatings were synthesized by laser cladding using a cw 3 kW CO2 laser. Two kinds of coatings were present in terms of TiCp origins, i.e. undissolved and in situ reacted TiCp, respectively. The former came from the TiCp pre-coated on the sample, whereas the latter from in situ reaction between titanium and graphite in the molten pool during laser irradiation. Conventional and high-resolution transmission electron microscope observations showed the epitaxial growth of TiC, the precipitation of CrB, and the chemical reaction between Ti and B elements around phase interfaces of undissolved TiCp. The hardness, H, and elastic modulus, E, were measured by nanoindentation of the matrix near the TiCp interface. For undissolved TiCp, the loading curve revealed pop-in phenomena caused by the plastic deformation of the crack formation or debounding of TiCp from the matrix. As for in situ generated TiCp, no pop-in mark appears. On the other hand, in situ reacted TiCp led to much higher hardness and modulus than that in the case of undissolved TiCp. The coating reinforced by in situ generated TiCp displayed the highest impact wear resistance at both low and high impact conditions, as compared with coatings with undissolved TiCp and without TiCp. The impact wear resistance of the coating reinforced by undissolved TiCp increases at a low impact work but decreases at a high impact work, as compared with the single Ni alloy coating. The degree of wear for the composite coating depends primarily on the debonding removal of TiCp.