1000 resultados para Eckernförder Bucht off Boknis Eck
Resumo:
Commercial catches taken in southwestern Australian waters by trawl fisheries targeting prawns and scallops and from gillnet and longline fisheries targeting sharks were sampled at different times of the year between 2002 and 2008. This sampling yielded 33 elasmobranch species representing 17 families. Multivariate statistics elucidated the ways in which the species compositions of elasmobranchs differed among fishing methods and provided benchmark data for detecting changes in the elasmobranch fauna in the future. Virtually all elasmobranchs caught by trawling, which consisted predominantly of rays, were discarded as bycatch, as were approximately a quarter of the elasmobranchs caught by both gillnetting and longlining. The maximum lengths and the lengths at maturity of four abundant bycatch species, Heterodontus portusjacksoni, Aptychotrema vincentiana, Squatina australis, and Myliobatis australis, were greater for females than males. The L50 determined for the males of these species at maturity by using full clasper calcification as the criterion of maturity did not differ significantly from the corresponding L50 derived by using gonadal data as the criterion for maturity. The proportions of the individuals of these species with lengths less than those at which 50% reach maturity were far greater in trawl samples than in gillnet and longline samples. This result was due to differences in gear selectivity and to trawling being undertaken in shallow inshore waters that act as nursery areas for these species. Sound quantitative data on the species compositions of elasmobranchs caught by commercial fisheries and the biological characteristics of the main elasmobranch bycatch species are crucial for developing strategies for conserving these important species and thus the marine ecosystems of which they are part.
Resumo:
Settled juvenile blue rockfish (Sebastes mystinus) were collected from two kelp beds approximately 335 km apart off Mendocino in northern California and Monterey in central California. A total of 112 rockfish were collected from both sites over 5 years (1993, 1994, 2001, 2002, and 2003). Total age, settlement date, age at settlement, and birth date were determined from otolith microstructure. Fish off Mendocino settled mostly in June and fish off Monterey settled mostly in May (average difference in settlement=23 days). Although the difference in the timing of settlement followed this same pattern for both areas over the five years, settlement occurred later in 2002 and 2003 than in the prior years of sampling. The difference in the timing of settlement was due primarily to differences in birth dates for the two areas. The time of settlement was positively related to upwelling and negatively related to sea level anomaly for most of the months before settlement. Knowledge of the timing of settlement has implications for design and placement of marine protected areas because protection of nursery grounds is frequently a major objective of these protected areas. The timing of settlement is also an important consideration in the planning of surveys of early recruits because mistimed surveys (caused by latitudinal differences in the timing of settlement) could produce biased estimates.
Resumo:
The time series of abundance indices for many groundfish populations, as determined from trawl surveys, are often imprecise and short, causing stock assessment estimates of abundance to be imprecise. To improve precision, prior probability distributions (priors) have been developed for parameters in stock assessment models by using meta-analysis, expert judgment on catchability, and empirically based modeling. This article presents a synthetic approach for formulating priors for rockfish trawl survey catchability (qgross). A multivariate prior for qgross for different surveys is formulated by using 1) a correction factor for bias in estimating fish density between trawlable and untrawlable areas, 2) expert judgment on trawl net catchability, 3) observations from trawl survey experiments, and 4) data on the fraction of population biomass in each of the areas surveyed. The method is illustrated by using bocaccio (Sebastes paucipinis) in British Columbia. Results indicate that expert judgment can be updated markedly by observing the catch-rate ratio from different trawl gears in the same areas. The marginal priors for qgross are consistent with empirical estimates obtained by fitting a stock assessment model to the survey data under a noninformative prior for qgross. Despite high prior uncertainty (prior coefficients of variation ≥0.8) and high prior correlation between qgross, the prior for qgross still enhances the precision of key stock assessment quantities.
Resumo:
The Pacific sardine (Sardinops sagax) is distributed along the west coast of North America from Baja California to British Columbia. This article presents estimates of biomass, spawning biomass, and related biological parameters based on four trawl-ichthyoplankton surveys conducted during July 2003 –March 2005 off Oregon and Washington. The trawl-based biomass estimates, serving as relative abundance, were 198,600 t (coefficient of variation [CV] = 0.51) in July 2003, 20,100 t (0.8) in March 2004, 77,900 t (0.34) in July 2004, and 30,100 t (0.72) in March 2005 over an area close to 200,000 km2. The biomass estimates, high in July and low in March, are a strong indication of migration in and out of this area. Sardine spawn in July off the Pacific Northwest (PNW) coast and none of the sampled fish had spawned in March. The estimated spawning biomass for July 2003 and July 2004 was 39,184 t (0.57) and 84,120 t (0.93), respectively. The average active female sardine in the PNW spawned every 20–40 days compared to every 6–8 days off California. The spawning habitat was located in the southeastern area off the PNW coast, a shift from the northwest area off the PNW coast in the 1990s. Egg production in off the PNW for 2003–04 was lower than that off California and that in the 1990s. Because the biomass of Pacific sardine off the PNW appears to be supported heavily by migratory fish from California, the sustainability of the local PNW population relies on the stability of the population off California, and on local oceanographic conditions for local residence.
Resumo:
Multiyear ichthyoplankton surveys used to monitor larval fish seasonality, abundance, and assemblage structure can provide early indicators of regional ecosystem changes. Numerous ichthyoplankton surveys have been conducted in the northern Gulf of Mexico, but few have had high levels of temporal resolution and sample replication. In this study, ichthyoplankton samples were collected monthly (October 2004–October 2006) at a single station off the coast of Alabama as part of a long-term biological survey. Four seasonal periods were identified from observed and historic water temperatures, including a relatively long (June–October) “summer” period (water temperature >26°C). Fish egg abundance, total larval abundance, and larval taxonomic diversity were significantly related to water temperature (but not salinity), with peaks in the spring, spring–summer, and summer periods, respectively. Larvae collected during the survey represented 58 different families, of which engraulids, sciaenids, carangids, and clupeids were the most prominent. The most abundant taxa collected were unidentified engraulids (50%), sand seatrout (Cynoscion arenarius, 7.5%), Atlantic bumper (Chloroscombrus chrysurus, 5.4%), Atlantic croaker (Micropogonias undulatus, 4.4%), Gulf menhaden (Brevoortia patronus, 3.8%), and unidentified gobiids (3.6%). Larval concentrations for dominant taxa were highly variable between years, but the timing of seasonal occurrence for these taxa was relatively consistent. Documented increases in sea surface temperature on the Alabama shelf may have various implications for larval fish dynamics, as indicated by the presence of tropical larval forms (e.g., fistularids, labrids, scarids, and acanthurids) in our ichthyoplankton collections and in recent juvenile surveys of Alabama and northern Gulf of Mexico seagrass habitats.
Resumo:
Stomach samples from three rockfish species, yellowtail (Sebastes f lavidus), widow (S. entomelas), and canary (S. pinniger) rockfish, seasonally collected off the Pacific Northwest in 1998 and 1999, provided quantitative information on the food habits of these species during and after the 1997–98 El Niño event. Although euphausiids were the most common major prey of all three predators, gelatinous zooplankton and fishes were the most commonly consumed prey items during some seasonal quarters. The influence of the El Niño event was evident in the diets. Anomalous prey items, including the southern euphausiid species Nyctiphanes simplex and juveniles of Pacific whiting (Merluccius productus) frequently appeared in the diets in the spring and summer of 1998. The results of stomach contents analyses, based on 905 stomach samples from 49 trawl hauls during seven commercial fishing trips and from 56 stations during research surveys, were consistent with the timing of occurrence and the magnitude of change in biomass of some zooplankton species reported from zooplankton studies in the northern California Current during the 1997–98 El Niño. Our findings indicate that the observed variations of prey groups in some rockfish diets may be a function of prey variability related to climate and environment changes.
Resumo:
Analyses of sex-specific yield per recruit and spawning stock biomass per recruit were conducted to evaluate the current status of the sailfish (Istiophorus platypterus) fishery in the waters off eastern Taiwan. Natural mortality rates estimated from Pauly’s empirical equation were 0.26/yr for females and 0.27/yr for males. The current fishing mortality rates were estimated as 0.24/yr and 0.43/yr for females and males, respectively, which are much lower than the estimated F0 .1 (0.62/yr and 0.79/yr for females and males, respectively) and FSSB40 (0.46/yr for females) which are commonly used as target reference points in fisheries management. The effects of the fishing mortality, natural mortality, and age at first capture on the estimates of biological reference points were evaluated by using the Monte Carlo simulation. The results indicate that failure to consider the uncertainty in parameters such as natural mortality or age at first capture may lead to the improper estimation of biological reference points. This study indicates the possibility of current fishing mortality exceeding the target biological reference points may be negligible for sailfish in the waters off eastern Taiwan. However, in view of the recent rapid increase in fishing effort, it is evident that the stock status and development of the fishery need to be closely monitore
Resumo:
Although the Atlantic white-sided dolphin (Lagenorhynchus acutus) is one of the most common dolphins off New England, little has been documented about its diet in the western North Atlantic Ocean. Current federal protection of marine mammals limits the supply of animals for investigation to those incidentally caught in the nets of commercial fishermen with observers aboard. Stomachs of 62 L. acutus were examined; of these 62 individuals, 28 of them were caught by net and 34 were animals stranded on Cape Cod. Most of the net-caught L. acutus were from the deeper waters of the Gulf of Maine. A single stomach was from the continental slope south of Georges Bank. At least twenty-six fish species and three cephalopod species were eaten. The predominant prey were silver hake (Merluccius bilinearis), spoonarm octopus (Bathypolypus bairdii), and haddock (Melanogrammus aeglefinus). The stomach from a net-caught L. acutus on the continental slope contained 7750 otoliths of the Madeira lanternfish (Ceratoscopelus maderensis). Sand lances (Ammodytes spp.) were the most abundant (541 otoliths) species in the stomachs of stranded L. acutus. Seasonal variation in diet was indicated; pelagic Atlantic herring (Clupea harengus) was the most important prey in summer, but was rare in winter. The average length of fish prey was approximately 200 mm, and the average mantle length of cephalopod prey was approximately 50 mm.
Resumo:
A portion of the Oculina Bank located off eastern Florida is a marine protected area (MPA) preserved for its dense populations of the ivory tree coral (Oculina varicosa), which provides important habitat for fish. Surveys of fish assemblages and benthic habitat were conducted inside and outside the MPA in 2003 and 2005 by using remotely operated vehicle video transects and digital still imagery. Fish species composition, biodiversity, and grouper densities were used to determine whether O. varicosa forms an essential habitat compared to other structure-forming habitats and to examine the effectiveness of the MPA. Multivariate analyses indicated no differences in fish assemblages or biodiversity among hardbottom habitat types and grouper densities were highest among the most complex habitats; however the higher densities were not exclusive to coral habitat. Therefore, we conclude that O. varicosa was functionally equivalent to other hardbottom habitats. Even though fish assemblages were not different among management areas, biodiversity and grouper densities were higher inside the MPA compared to outside. The percentage of intact coral was also higher inside the MPA. These results provide initial evidence demonstrating effectiveness of the MPA for restoring reef fish and their habitat. This is the first study to compare reef fish populations on O. varicosa with other structure-forming reef habitats and also the first to examine the effectiveness of the MPA for restoring fish populations and live reef cover.
Resumo:
Sand seatrout (Cynoscion arenarius) and silver seatrout (C. nothus) are both found within the immediate offshore areas of the Gulf of Mexico, especially around Texas; however information is limited on how much distributional overlap really occurs between these species. In order to investigate spatial and seasonal differences between species, we analyzed twenty years of bay and offshore trawl data collected by biologists of the Coastal Fisheries Division, Texas Parks and Wildlife Department. Sand seatrout and silver seatrout were distributed differently among offshore sampling areas, and salinity and water depth appeared to correlate with their distribution. Additionally, within the northernmost sampling area of the gulf waters, water depth correlated significantly with the presence of silver seatrout, which were found at deeper depths than sand seatrout. There was also an overall significant decrease in silver seatrout abundance during the summer season, when temperatures were at their highest, and this decrease may have indicated a migration farther offshore. Sand seatrout abundance had an inverse relationship with salinity and water depth offshore. In addition, sand seatrout abundance was highest in bays with direct passes to the gulf and correlated with corresponding abundance in offshore areas. These data highlight the seasonal and spatial differences in abundance between sand and silver seatrout and relate these differences to the hydrological and geological features found along the Texas coastline.
Resumo:
The community structure of fishes associated with pelagic Sargassum spp. and open water lacking Sargassum was examined during summer and fall cruises, 1999–2003, in the Gulf Stream off North Carolina. Significantly more individual fishes (n= 18,799), representing at least 80 species, were collected from samples containing Sargassum habitat, compared to 60 species (n=2706 individuals) collected from openwater habitat. The majority (96%) of fishes collected in both habitats were juveniles, and planehead filefish (Stephanolepis hispidus) dominated both habitats. Regardless of sampling time (day or night), Sargassum habitat yielded significantly higher numbers of individuals and species compared with open-water collections. Overall, fishes collected by neuston net tows from Sargassum habitat were significantly larger in length than fishes collected from open-water habitat with neuston nets. A significant positive, linear relationship existed between numbers of fishes and the quantity of Sargassum collected by neuston net. Underwater video recordings indicated a layered structure of fishes among and below the algae and that smaller fishes were more closely associated with the algae than larger fishes. Observations of schooling behaviors of filefishes (Monacanthidae), dolphinfish (Coryphaena hippurus), and jacks (Carangidae), and fish-jellyfish associations were also recorded with an underwater video camera. Our data indicate that Sargassum provides a substantial nursery habitat for many juvenile fishes off the U.S. southeast coast.
Resumo:
King mackerel (Scomberomorus cavalla) are ecologically and economically important scombrids that inhabit U.S. waters of the Gulf of Mexico (GOM) and Atlantic Ocean (Atlantic). Separate migratory groups, or stocks, migrate from eastern GOM and southeastern U.S. Atlantic to south Florida waters where the stocks mix during winter. Currently, all winter landings from a management-defined south Florida mixing zone are attributed to the GOM stock. In this study, the stock composition of winter landings across three south Florida sampling zones was estimated by using stock-specific otolith morphological variables and Fourier harmonics. The mean accuracies of the jackknifed classifications from stepwise linear discriminant function analysis of otolith shape variables ranged from 66−76% for sex-specific models. Estimates of the contribution of the Atlantic stock to winter landings, derived from maximum likelihood stock mixing models, indicated the contribution was highest off southeastern Florida (as high as 82.8% for females in winter 2001−02) and lowest off southwestern Florida (as low as 14.5% for females in winter 2002−03). Overall, results provided evidence that the Atlantic stock contributes a certain, and perhaps a significant (i.e., ≥50%), percentage of landings taken in the management-defined winter mixing zone off south Florida, and the practice of assigning all winter mixing zone landings to the GOM stock should
Resumo:
Ichthyoplankton samples were collected at approximately 2-week intervals, primarily during spring and summer 1999−2004, from two stations located 20 and 30 km from shore near the Columbia River, Oregon. Northern anchovy (Engraulis mordax) was the most abundant species collected, and was the primary species associated with summer upwelling conditions, but it showed significant interannual and seasonal fluctuations in abundance and occurrence. Other abundant taxa included sanddabs (Citharichthys spp.), English sole (Parophrys vetulus), and blacksmelts (Bathylagidae). Two-way cluster analysis revealed strong species associations based primarily on season (before or after the spring transition date). Ichthyoplankton abundances were compared to biological and environmental data, and egg and larvae abundances were found to be most correlated with sea surface temperature. The Pacific Decadal Oscillation changed sign (from negative to positive) in late 2002 and indicated overall warmer conditions in the North Pacific Ocean. Climate change is expected to alter ocean upwelling, temperatures, and Columbia River flows, and consequently fish eggs and larvae distributions and survival. Long-term research is needed to identify how ichthyoplankton and fish recruitment are affected by regional and largescale oceanographic proces
Resumo:
Age, growth, and reproductive data were obtained from dolphinfish (Coryphaena hippurus, size range: 89 to 1451 mm fork length [FL]) collected between May 2002 and May 2004 off North Carolina. Annual increments from scales (n=541) and daily increments from sagittal otoliths (n=107) were examined; estimated von Bertalanffy parameters were L∞ (asymptotic length)=1299 mm FL and k (growth coefficient)=1.08/yr. Daily growth increments reduced much of the residual error in length-at-age estimates for age-0 dolphinfish; the estimated average growth rate was 3.78 mm/day during the first six months. Size at 50% maturity was slightly smaller for female (460 mm FL) than male (475 mm FL) dolphinfish. Based on monthly length-adjusted gonad weights, peak spawning occurs from April through July off North Carolina; back-calculated hatching dates from age-0 dolphinfish and prior reproductive studies on the east coast of Florida indicate that dolphinfish spawning occurs year round off the U.S. east coast and highest levels range from January through June. No major changes in length-at-age or size-at-maturity have occurred since the early 1960s, even after substantial increases in fishery landings.
Resumo:
To determine if shoreface sand ridges provide unique habitats for fish on the inner continental shelf, two cross-shelf trawl surveys (23 km in length) were conducted in southern New Jersey (July and September 1991−95 with a beam trawl and July and September 1997−06 with an otter trawl) to assess whether species abundance, richness, and assemblages differed on and away from the ridge. The dominant species collected with both gears were from the families Paralichthyidae, Triglidae, Gobiidae, Serranidae, Engraulidae, Stromateidae, and Sciaenidae. Overall abundance (n=41,451 individuals) and species richness (n=61 species) were distributed bimodally across the nearshore to offshore transect, and the highest values were found on either side of the sand ridge regardless of gear type. Canonical correspondence analysis revealed three species assemblages: inshore (<5 meters depth), near-ridge (9−14 meters depth), and offshore (>14 meters depth), and variation in species composition between gear types. Environmental factors that corresponded with the assemblage changes included depth, temperature, distance from the top of the ridge, and habitat complexity. The most abundant near-ridge assemblages were distinct and included economically important species. Sand ridges of the inner continental shelf appear to be important habitat for a number of fish species and therefore may not be a suitable area for sand and gravel mining.