987 resultados para ETHYLENE POLYMERIZATION CATALYSTS
Resumo:
Microporous HZSM-5 zeolite and mesoporous SiO2 supported Ru-Co catalysts of various Ru adding amounts were prepared and evaluated for Fischer-Tropsch synthesis (FTS) of gasoline-range hydrocarbons (C-5-C-12). The tailor-made Ru-Co/SiO2/HZSM-5 catalysts possessed both micro- and mesopores, which accelerated hydrocracking/hydroisomerization of long-chain products and provided quick mass transfer channels respectively during FTS. In the same time. Ru increased Cor reduction degree by hydrogen spillover, thus CO conversion of 62.8% and gasoline-range hydrocarbon selectivity of 47%, including more than 14% isoparaffins, were achieved simultaneously when Ru content was optimized at 1 wt% in Ru-Co/SiO2/HZSM-5 catalyst.
Resumo:
High amounts of acid compounds in bio-oil not only lead to the deleterious properties such as corrosiveness and high acidity, but also set up many obstacles to its wide applications. By hydrotreating the bio-oil under mild conditions, some carboxylic acid compounds could be converted to alcohols which would esterify with the unconverted acids in the bio-oil to produce esters. The properties of the bio-oil could be improved by this method. In the paper, the raw bio-oil was produced by vacuum pyrolysis of pine sawdust. The optimal production conditions were investigated. A series of nickel-based catalysts were prepared. Their catalytic activities were evaluated by upgrading of model compound (glacial acetic acid). Results showed that the reduced Mo-10Ni/gamma-Al2O3 catalyst had the highest activity with the acetic acid conversion of 33.2%. Upgrading of the raw bio-oil was investigated over reduced Mo-10Ni/gamma-Al2O3 catalyst. After the upgrading process, the pH value of the bio-oil increased from 2.16 to 2.84. The water content increased from 46.2 wt.% to 58.99 wt.%. The H element content in the bio-oil increased from 6.61 wt.% to 6.93 wt.%. The dynamic viscosity decreased a little. The results of GC-MS spectrometry analysis showed that the ester compounds in the upgraded bio-oil increased by 3 times. it is possible to improve the properties of bio-oil by hydrotreating and esterifying carboxyl group compounds in the bio-oil.
Resumo:
The effects of five metal catalysts (K, Na, Ca, Mg, and Fe) on CO2 gasification reactivity of fir char were studied using thermal gravimetric analysis. The degree of carbonization, crystal structure and morphology of char samples was characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The CO2 gasification reactivity of fir char was improved through the addition of metal catalysts, in the order K>Na>Ca>Fe>Mg. XRD analysis indicated that Na and Ca improved the formation of crystal structure, and that Mg enhanced the degree of carbon structure ordering. SEM analysis showed that spotted activation centers were distributed on the surface of char samples impregnated with catalysts. Moreover, a loose flake structure was observed on the surface of both K-char and Na-char. Finally, the kinetic parameters of CO2 gasification of char samples were calculated mathematically.
Resumo:
The dissociation behaviors of propane hydrate by high concentration alcohols inhibitors injection were investigated. Methanol (30.0, 60.1, 80.2, and 99.5 wt %) and ethylene glycol (30.0, 60.1, 69.8, 80.2, and 99.5 wt %) solution were injected, respectively, as alcohols inhibitors in 3.5 L transparent reactor. It is shown that the average dissociation rates of propane hydrate injecting methanol and ethylene glycol solution are 0.02059-0.04535 and 0.0302-0.0606 mol.min(-1).L-1, respectively. The average dissociation rates increase with the mass concentration increase of alcohols solution, and it is the biggest when 99.5 wt % ethylene glycol solution was injected. The presence of alcohols accelerates gas hydrate dissociation and reduces the total need of external energy to dissociate the hydrates. Density differences act as driving force, causing the acceleration effects of ethylene glycol on dissociation behaviors of propane hydrate are better than that of methanol with the same injecting flux and mass concentration.
Resumo:
Autothermal reforming of methanol for hydrogen production was investigated over ZnO-ZnCr2O4 supported on a series of metal oxides (Al2O3, CeO2, ZrO2 and CeO2-ZrO2)CeO2-ZrO2 mixed oxides with Ce /Zr molar ratio of 4/1 was found to be the optimal support which showed significant effect on the catalytic activity and selectivity. The ZnO-ZnCr2O4/CeO2-ZrO2 and ZnO-ZnCr2O4 catalysts were characterized by XRD, TEM, H-2-TPR and XPS. The results show that CeO2-ZrO2 mixed oxides have significant effect on the catalytic performance and the supported catalyst shows more uniform temperature distribution in the catalyst bed which was mainly due to its reasonable redox properties.
Resumo:
The production of biodiesel is greatly increasing due to its enviromental benefits. However, production costs are still rather high, compared to petroleum-based diesel fuel. The introduction of a solid heterogeneous catalyst in biodiesel production could reduce its price, becoming competitive with diesel also from a financial point of view. Therefore, great research efforts have been underway recently to find the right catalysts. This paper will be concerned with reviewing acid and basic heterogeneous catalyst performances for biodiesel production, examining both scientific and patent literature.
Resumo:
Two types of SiO2 with different mesopore size and HZSM-5 zeolite were used to prepare hybrid supported cobalt-based catalysts. The textual and structural properties of the catalysts were studied using N-2 physisorption, X-ray diffraction (XRD), and H-2 temperature-programmed reduction (TPR) techniques. Fischer-Tropsch synthesis (FTS) performances of the catalysts were carried out in a fixed-bed reactor. The combination effects of the meso- and micropores of the supports as well as the interaction between supports and cobalt particles on FTS activity are discussed. The results indicate that the catalyst supported on the tailor-made SiO2 and HZSM-5 hybrid maintained both meso- and micropore pores during the preparation process without HZSM-5 particles agglomerating. The mesopores provided quick mass transfer channels, while the micropores contributed to high metal dispersion and accelerated hydrocracking/hydroisomerization reaction rate. High CO conversion of 83.9% and selectivity to gasoline-range hydrocarbons (C-5-C-12) of 55%, including more than 10% isoparaffins, were achieved simultaneously on this type of catalyst.
Resumo:
This article investigates the gas production behavior from methane hydrate (MH) in porous sediment by injecting ethylene glycol (EG) solution with the different concentrations and the different injection rates in an one-dimensional experimental apparatus. The results suggest that the gas production process can be divided into the four stages: (1) the initial injection, (2) the EG diluteness, (3) the hydrate dissociation, and (4) the remained gas output. Nevertheless, the water production rate keeps nearly constant during the whole production process. The production efficiency is affected by both the EG concentration and the EG injection rate, and it reaches a maximum with the EG concentration of 60 wt %.
Resumo:
Solid acid 40SiO(2)/TiO2-SO42- and solid base 30K(2)CO(3)/Al2O3-NaOH were prepared and compared with catalytic esterification activity according to the model reaction. Upgrading bio-oil by solid acid and solid base catalysts in the conditioned experiment was investigated, in which dynamic viscosities of bio-oil was lowered markedly, although 8 months of aging did not show much viscosity to improve its fluidity and enhance its stability positively. Even the dehydration by 3A molecular sieve still kept the fluidity well. The density of upgraded bio-oil was reduced from 1.24 to 0.96 kg/m(3), and the gross calorific value increased by 50.7 and 51.8%, respectively. The acidity of upgraded bio-oil was alleviated by the solid base catalyst but intensified by the solid acid catalyst for its strong acidification. The results of gas chromatography-mass spectrometry analysis showed that the ester reaction in the bio-oil was promoted by both solid acid and solid base catalysts and that the solid acid catalyst converted volatile and nonvolatile organic acids into esters and raised their amount by 20-fold. Besides the catalytic esterification, the solid acid catalyst carried out the carbonyl addition of alcohol to acetals. Some components of bio-oil undertook the isomerization over the solid base catalyst.
Resumo:
聚丙交酯又称聚乳酸(PLA),是目前最重要的合成生物降解高分子之一。丙交酯有L,L-丙交酯(LLA)、D,D-丙交酯(DLA)和内消旋丙交酯(meso-LA)三种立体异构体。PLA包括全同立构、间同立构、无规立构、不均匀有规立构和嵌段立构等构型。 PLA的微观链结构在很大程度上决定了PLA的理化性质。无规立构和不均匀有规立构聚丙交酯是非晶聚合物,它们可以由meso-LA或者rac-LA(LLA和DLA的等物质的量混合物)的聚合得到;而全同立构、间同立构和嵌段立构的聚丙交酯都是可以结晶的;全同立构的聚丙交酯可由纯的DLA或者LLA聚合而成,高分子量的全同立构PLA(PLLA或者PDLA)的熔点约180ºC;但是,有趣的是,等量PDLA和PLLA形成的外消旋混合物的熔点约230ºC,这与无规的poly(rac-LA)(聚外消旋丙交酯)形成强烈对照;间同和嵌段立构聚丙交酯只是最近几年才被合成出来,目前,只能通过丙交酯的立体选择性聚合才能得到,它们的结晶性和熔点随催化剂的选择性不同变化范围很大;而就降解性能而言,非晶聚丙交酯的降解速率要高于结晶性的聚丙交酯。因为序列结构对聚丙交酯的性质有很大的影响,而聚丙交酯的序列结构可以通过丙交酯的立体选择性聚合来控制,所以,近年来,丙交酯的立体选择性聚合催化剂的开发成为了一个研究热点。 我们设计合成了一系列非手性烯醇式席夫碱-铝/锌化合物,详细的表征了它们的结构,阐明了配体取代基团与催化剂构型之间的关系;将这一系列化合物用于丙交酯的开环聚合,系统的研究了不同结构的催化剂与丙交酯的聚合动力学、立体规整度之间的关系。
Resumo:
本文的主要工作和研究结果如下: 1. 合成与表征了一系列吡咯亚胺钒(III)配合物。在Et2AlCl的活化下,它们能高效催化乙烯聚合,活性可高达48.6 kg PE/mmolVhbar,得到高分子量且分子量分布单分散的线性聚乙烯。吡咯亚胺钒催化体系具有较好的高温耐受性,即使在70 C下聚乙烯催化活性仅比50 C时下降30-40%,并且仍然比VCl3.(THF)3活性高,且分子量分布在70 C仍能保持2.5以下,说明催化剂是单活性基的。与单配的水杨醛亚胺钒催化剂相比,吡咯亚胺钒配合物具有更高的乙烯催化活性,得到具有更窄分子量分布的聚乙烯,说明具有五元环N,N螯合的吡咯亚胺配体能更好的稳定钒活性中心,增加催化剂的活性。 2. 通过采用烷基铝预先对功能性基团进行保护的方法,我们用吡咯亚胺钒/Et2AlCl催化体系实现了乙烯与一系列功能性单体如十一烯醇、十一烯酸甲酯、烯丁醇的共聚合。与其他共聚单体相比,十一烯醇的插入率更高。在温和条件下十一烯醇的插入率可以轻松达到15.8%,活性仍能保持1.4 kg/molVh。通过控制Al/V、共聚单体浓度、聚合温度等反应参数,共聚反应的活性、功能性单体插入率、以及共聚物的分子量可在很大范围内进行调控。 3.合成并表征了一系列双吡咯亚胺钒(Ⅲ)配合物,并初步研究了其乙烯聚合行为。在Et2AlCl和三氯乙酸乙酯的存在下,这些配合物具有优异的催化乙烯聚合的能力,其聚合活性可达28.8 kg PE/mmolVh。双吡咯亚胺钒(Ⅲ)配合物比单配的吡咯亚胺钒(Ⅲ)配合物具有更好的温度耐受性,随着温度的升高,乙烯聚合活性升高,70C时活性与50C时相当或者更高。 关键词:钒催化剂,乙烯聚合,乙烯与功能性单体共聚合
Resumo:
本论文合成、表征了一系列以镍、钦为中心离子的非茂过渡金属配合物,研究了这些配合物催化烯烃聚合的反应行为。主要工作和结论如下:1.合成、表征了一系列水杨醛亚胺中性镍配合物。在改性甲基铝氧烷(MMAO)的活化下,这些中性镍配合物可高效催化降冰片烯伽BE)的加成聚合,在优化条件下,催化活性高达7.1×107 gPNBE/molNi.h,聚降冰片烯的分子量高达1.5×106g/mol。2.合成、表征了三种新型p一二酮单亚胺中性镍配合物。X-射线分析表明,这些中性镍配合物的空间构型为扭曲的平面四边形。在Ni(CO)2的活化下,这些中性镍配合物可催化乙烯聚合生成以甲基支化为主的支化聚乙烯。在MMAO的活化下,这些中性镍配合物是降冰片烯加成聚合的高效催化剂,在优化条件下,催化活性高达4.5×107gPNBE/molNi.h,聚降冰片烯的分子量高达1.1×106g/mol。另外,这些中性镍配合物在MMAO的活化下,可催化甲基丙烯酸甲酷(MMA)聚合,生成富间规的聚甲基丙烯酸甲酷(rr一70%)。令人惊讶的是,这些中性镍配合物/MMAO体系还能催化乙烯和MMA的共聚合反应,生成乙烯与MMA的无规共聚物,极性单体的插入率可达16.7 mol%。3.合成、表征了一系列新型β-二酮单亚胺钦配合物。X-射线分析表明,这些钦配合物的立体构型为含有一个CZ轴的变形八面体。常温下,这些钦配合物在MMAO的活化下,可以高效催化乙烯活性聚合,催化活性可达1.3×l06g PE/molTi-h,生成无支链的线性聚乙烯。常温下,这些钦配合物瓜IMAO体系还能高效催化乙烯和降冰片烯的活性共聚合反应,催化活性高达3.2×106gpolymer/molTi'h,所得聚合物为乙烯与降冰片烯的交替共聚物(COC)。利用该催化体系的活性聚合性质,制备了包含半晶和无定形两种结构片段的新型A-B二嵌段共聚物(PE-b1ock-COC)。4.合成、表征了一系列新型β-二亚胺钦配合物。在MMAO的活化下,这些钦配合物可以常温催化乙烯聚合,在优化条件下,催化活性可达4.6×105 gPe/molTi-h,生成双峰分布的聚乙烯,重均分子量高达6.6×105g/mol。
Resumo:
本论文合成、表征了一系列以铁、钻、镍、铬为中心离子的非茂过渡金属配合物,研究了这些配合物催化烯烃聚合的反应行为。主要工作和结论如下:1,合成、表征了一系列苯环邻、对位含取代基的毗咤双亚胺铁、钻乙烯聚合催化剂。在改性甲基铝氧烷(MMAO)的活化下,这些配合物可高效催化乙烯聚合。在优化条件下,研究了邻、对位取代基电子效应对催化活性的影响。对于铁催化剂来说,不仅邻位取代基体积的大小对乙烯的插入及所得聚合物的分子量有微调作用,对位取代基的电子效应也对催化活性和聚合物分子量影响也很大。2.我们在单核毗咤双亚胺铁催化剂的基础上,设计合成了环状三核铁催化剂。这种环状三核铁催化剂的活性中心位于环状结构的内部。在有机铝的活化下,可高效催化乙烯聚合。新的催化剂展示出更长的催化剂寿命,与单核铁催化剂相比,性能上得到非常大的改善,不但能防止催化剂分子间的失活,还可有效抑制链转移反应的发生。3.在MMAO的活化下,吡啶双亚胺铁可催化(甲基)丙烯酸酷的聚合。催化MMA的聚合时,得到低分子量、窄分布的间规PMMA;催化BMA的聚合时,活性很高,得到无规、低分子量的PBMA;催化丙烯酸酷聚合时,不仅活性高,而且易得到高分子量的聚合物。催化活性、聚合物产率、立构规整度、分子量及分子量分布都会受到反应参数、催化剂结构及助催化剂的性质的影响。4.合成、表征了一系列带有不同取代基的份二亚胺镍催化剂。在MMAO的活化下,这些镍配合物可以高效催化乙烯聚合。不仅邻位取代基体积的大小对乙烯的插入及所得聚合物的分子量有微调作用,对位取代基的电子效应也对催化活性、聚合物分子量及其支化度也有很大的影响。5.合成、表征了一系列新型二苯硫醚双亚胺铬催化剂。在MMAO的活化下,这些铬配合物可常温催化乙烯聚合,生成具有宽分布的聚乙烯。配体结构以及聚合条件对催化剂的活性及所得聚合物的性质有很大影响。
Resumo:
本论文合成、表征了一系列改性单茂钦配合物,研究了这些配合物催化苯乙烯间规聚合反应行为。主要工作和结论如下:1.合成、表征了一系列双酚(胺)氧基五甲基单茂钦氯化物。在改性甲基铝氧烷(MMAO)的活化下,这些配合物可高效地催化苯乙烯间规聚合,在较高的聚合温度时(70-90℃),催化活性接近或超过五甲基氯化单茂钦的活性,在较低的铝钦比时(500/1),催化活性远远高于五甲基氯化单茂钦的活性。2.合成、表征了一系列新型单乙醇苯胺五甲基单茂钦氯化物。在MMAO的活化下,这类配合物是苯乙烯间规聚合的高效催化剂,催化活性高于母体配合物五甲基单茂钦氯化物,在较高的聚合温度和较低的铝钦比时,体现出优异的催化性能。这类配合物的催化活性随着配体的空间位阻的增大而逐渐升高。3.合成、表征了一系列新型双乙醇苯胺五甲基单茂钦氯化物。在MMAO的活化下,可以高效催化苯乙烯间规聚合,催化活性高于母体配合物五甲基单茂钦和相应的单乙醇苯胺配合物,尤其在较高的聚合温度和较低的铝钦比时,更加体现出优于母体配合物的催化性能。这类配合物的催化活性随着配体的空间位阻的增大而逐渐升高。4.合成、表征了一系列新型含曼尼希碱类配体的五甲基单茂钦氯化物。在MMAO的活化下,可高效催化苯乙烯间规聚合,催化活性远远高于母体配合物五甲基单茂钦氯化物,尤其在较高的聚合温度和较低的铝钦比时,更加体现出优于母体配合物的催化性能。这类配合物的催化活性随着配体的空间位阻的增大而逐渐升高。5.合成、表征了一种新型的多核单茂钦配合物。在MMAO的活化下,这类钦配合物可催化苯乙烯间规聚合,在优化条件下,催化活性可以达到五甲基氯化单茂钦活性的三倍,尤其在较高的聚合温度和较低的铝钦比时,更加体现出优于母体配合物的催化性能。随着中心金属原子个数的增多,催化所需的MMAO的用量逐渐减少。