999 resultados para ESTRUTURAS METÁLICAS
Resumo:
Thin walled cylindrical shells are widely used in many areas of industry, including civil, mechanical, nuclear, marine, petroleum and aerospace engineering. The wide application of thin cylindrical shells and the importance of instability phenomenon are the motivation basis to this study, since these factors have a great importance in engineering projects. It is presented a detailed study about the instability of cylindrical shells based on theoretical calculation, which results are compared with finite elements method calculation. The loading and boundary conditions analyzed are based on the most common types verified in real engineering projects and refer respectively to lateral (external) pressure and cylinders with simply supported edges. The calculation based on the finite elements method was executed with ANSYS 13.0 software. The results obtained with this calculation are in good agreement with the analytical theory presented in the technical note NACA No 1341 (BATDORF, 1947) considering a wide range of applicability. On the other hand, the analytical method presented in the book Theory of Elastic Stability (TIMOSHENKO; GERE, 1936) has a very restrict applicability and has presented considerable deviations in a great sort of the analyzed cases
Resumo:
The objective of this work was collect information of articles published previously and carry out a study about them, including contents and interesting stuff that bring growth regarding the construction residues utilization and demolition (RCD), that today provides many environmental impacts. The need of utilization of the RCD in Brazil and in the world earned bigger attention world speaking, therefore the industry of the civil construction is had as one of the biggest present residues output springs. For it present a point that can be applied the RCD, is discussed in that work the kinds and structures of floors, where are presented the layers and, finally, a short argument about the possible and economic feasabilities job of the residues recycled in some layers of the structure of floor
Resumo:
The change in design of a building can occur during its construction process, especially when this change involves greater amount of profit for the building company, as it is the case of adding extra floors. However, there must be an analysis of the structure of the building in order to see if it is possible to increase the number of floors without the need of reinforcement, as this need would result in higher costs for the building company. This graduation report presents this analysis by using the methods of third order verification of reinforced concrete structures
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The use of heat in parallel with relative low temperatures and applied to several areas of the industry is essential for the main manufacturing processes, like drying, dehydrating, concentration, annealing, production of chemical reactions, and microbiological sterilization. Without neither the heat nor the coming of a great quantity of thermal heat, with high quality, there would not be the “modern society”, with its high standards of living plus its high consumption levels; from services to goods in general. Within an almost absolute way, the heat flows are obtained from vapor systems. Thus, in this work we are going into the operation of a vapor system, composed of two firetube boilers dimensioned to supply vapor for three processes. However, with the transfer of one of the processes to another plant, the system got over-dimensioned. But, taking advantage of this scenario, the two boilers were used to supply vapor to further processes, causing their intermittent usage. Moreover, the operational alternative adopted by the maintenance engineering of the plant for a creating a solution has been presented; both the positive points and negative ones were disclosed, likewise the possibility of improvement points
Resumo:
In civil engineering, a structure is the whole sustainment of a construction and, thus, it is important that it remains intact throughout its lifetime. An engineering construction must last for decades without losing its functionality. However its purpose may be altered and several times the original structure does not meet the new needs of use. Still, in new buildings, the functionality is altered due to possible flaws in execution and the structure, invariably does not reach the desired solicitation needs. In cases like this, the commonly adopted solutions are, basically, the demolishment followed by the reconstruction of the desired mold or the structural reinforcement. This second option, for long years, has not been put to practice due to certain factors such as the high costs for its implantation, use of inadequate reinforcement execution techniques, and the culture of people involved in the area regarding its use and, in this case, the option would always be the reconstruction. Thoughtout the years, some techniques were developed to allow the execution of structural reinforcements with low costs and in efficient ways. An interesting, fast, efficient and economical technique is the structural reinforcement through metal sheets put together with epoxy resin that can be applied in beams, slabs and pillars. In the present work the different behavior of beams reinforced with this technique. Steel is a very recommended material for these reinforcements due to its characteristics related to traction, compression and the effectiveness of the technique related to its cost. For the attachment the epoxy resin is recommended, since it allows the joining of two materials, in this case, steel and concrete. The efficiency of this union is so considerably high that it rarely produces any flaws in adherence and, normally, when it happens it is due to problems in the execution process, not in the union of materials
Resumo:
This work is to control the quality of the structures, procedures for addressing the assembly of the formwork, scaffolding and the frame of pillars, beams and slabs. He had also intended to show that the vibration of launch and concrete items are also important, if poorly implemented can undermine the structure. This work also shows that the mapping becomes essential if there is some problem in the concrete, where concrete was launched, could be identified. And finally check the product where the structure will be evaluated for how much their quality
Resumo:
Are being released in the construction market in Brazil ventures called Super 6. These businesses sell the promise of delivery of the apartment in six months after the launch of the venture. To meet this deadline are being deployed the constructive method of concrete walls using aluminum shapes. This system basically consists of pouring slabs and walls once, i.e. building up the wall shapes and slab joints. On the walls are used cloth, with reinforcements in vain and corners of walls and on these screens are tied the electrical boxes and conduits. For each tower is used the so-called system of half way, i.e. the system so it is sufficient to mount the Middle deck. Using a concrete which can be deformed in the next day you can lift one deck every two days with ready electric and hydraulicsystem, without having to tow the wall doing only minor fixes in the imperfections after concrete. With this system won an incredible speed in the construction of the structure reducing in almost one-third the length of the work. This work aims to compare in terms of cost-benefit of masonry structural systems and this new concrete wall system called Super 6. For this comparison will be used as parameter values used for the achievement of the Enterprise Portal of Roses of constructor Tenda which is one of the first to use concrete wall system. This project basically consists of seven towers of six floors each and will be budgeted the cost of this project if it were held in structural masonry. From these data it will be possible to make a comparison about the actual beneficial to adopt this system
Resumo:
Airplane Motor Cradles have a complex geometry, since they require different conbinations between different tubes and TIG welded in several angles. In T-25 aircraft and Universal T-27 Tucano (EMBRAER / FAB), besides having to bear the engine balance, these components maintain fixed the nose landing gear in another extremity. They are considered critical to flight safety, and for this reason, the aviation standards are extremely rigid in their production, imposing a zero index” of defects on the final weld metal quality. These structures may be containing an historical of welding repairs, whose effects on their structural integrity are not computed. In this work we analyzed the standardised AISI 4130 steel and the raw steel of tubes to the Airplane Motor Cradles. First of all, microscopy and microanalysis of the base steel, then we analyzed the effects of the TIG weld. Tensile testing was conducted to measure the difference between the mechanical properties of standardised steel and without this treatment
Resumo:
It aims the comparison of these moments between an analytical plates theory and a computational numerical simulation. It is accented the details of studies about analytical theory as well the process, step by step, of a program that has as an influence the method of finite elements. The theory of plates has an extremely importance when it is talked about slabs and it takes as a base some fundamental hypotheses (that the middle point of the plate is considered flat and under formable) the points that are normal in relation to the middle surface is not considered because of its intensity that is irrelevant in comparison to the rest. The computational programs offer good results when they are applied in a correct way and, it resolves numerous functions in a short period of time. The objective is to highlight the importance of bending moments, its points of maximum and minimum, that has the objective of realize a good reinforcement sizing for a reinforced concrete. Furthermore, it can propitiate an economy in places that is demanded a small quantity of steel, before dimensioned for a load that is distributed in all the surface of the plate, at the same intensity
Resumo:
In a globalized world, organizations face an increasingly dynamic, innovative and competitive environment, so that this condition requires continuous adaptation to market developments. Intense competition requires organizations to further improve their performance, making productive efficiency a key factor for survival. A methodology that has added value to the product through a reconfiguration of the production method is the implementation of a management philosophy called Lean Six Sigma. The main objective of this work is, in the light of the Lean Six Sigma philosophy, intervene in a critical-collaborative way to develop procedures for analyzing the profitability of products in a company specializing in steel processing. To achieve this goal, were applied the method of action-research to intervene in a group of professionals for the study of the profitability of products in a auto parts industry. The interaction of practical and theoretical knowledge provided by the action-research allowed the business program was enhanced. The procedures proposed in this study were able to identify the current profitability of the product, the main causes of inefficiency and productive for solutions to reduce production inefficiencies, when the productive systems planned and actual production system were compared. The results indicate that current profitability of -3%, while the parameter provided during budget was 10%. Thus, it is concluded that the low profitability of the products may compromise the company's financial results and affect their competitiveness in the market. To address this problem, the Lean Six Sigma presents itself as a versatile and high applicability philosophy, providing relevant results for characterization and troubleshooting. It was also observed that the evidence presented in this paper can be adapted to other companies in the metal auto parts segment to identify and recover the profitability of products
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Population growth, together with the gradual social ascent in Brazil, reflects at the growing need for better use of urban spaces. In this context, the amount of new buildings to meet the demand in property market, the needs for creating new roads and highways, among others, make the use of geotechnical works and, more specifically, retaining walls, more and more common. One of the simplest solutions for underground works is the use of retaining structures using tie back walls for soil support, therefore, the present work deals with this kind of structures. This paper proposes the use of FTOOL software testing in predicting deformations in tie back walls, by comparing simulations of the presented model to a real and measured deformation case in Guabirotuba Formation (PR). The results showed the importance of defining the parameters such as stiffness and curtain geometry, as well as the definition of representative loads acting on it. Also, it was pointed out that the passive response of the steel rods depends on the horizontal displacement of the wall. The study concluded that the program generates very representative results when compared to field data and seems to be a promising tool for tie back structures displacement predictions
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
The aim of the present study was to investigate the corrosion resistance in chloride medium of two cylindrical steel samples from civil construction (CA-50 and CA-60). For this purpose, electrochemical measurements were performed in NaCl solution, 4.0 g/L, naturally aerated. According to electrochemical responses, it was observed an active dissolution process at open circuit potential for both steels. In this comparative study, the differences between CA-50 and CA60 were not significant, since the values of polarization resistance estimated by EIS were the same order of magnitude for both types of steel (oscillating between 200 and 500 Ohm). For all evaluated thicknesses of concrete reinforcement, these values ranged between 2 and 9 kOhm, and the lower value was associated with lower thickness, particularly at 7, 21 and 35 days. When these results were compared with those determined for the CA-60, it was found that the layer of concrete reinforcement provide a protection against corrosion in chloride medium at least ten times larger