950 resultados para ENZYME-ACTIVITY
Resumo:
Lateral shoots of the Aloe vera (L.) Burm. cultivated in vitro, without addition vegetal regulators, for 90 days, were inoculated in MS culture-medium, containing or not spermine and/or spermidine. After 30 days of cultivation, the plants were submitted to biochemical analysis together with micropropagated plants - that were under in vitro cultivation for 90 days - (denominated as characterization), and matrix plants (in vivo). The levels of free polyamines, total phenols, total flavonoids, and the activity of peroxidase were evaluated in the biochemical analyses. The exogenous application of spermidine have promoted large number of shoots. Spermidine and spermine have promoted, when associated, an increase in the number of shoots as well as an increase of the contents of putrescine and and flavonoids. The putrescine has presented the most significant alterations, enabling to be utilized as marker of morphogenesis in the micropropagated Aloe vera. Tissues under active growth have presented high activity of peroxidase as well as those with greater rate of oxidation. In these tissues, there were noticed also higher contents of total flavonoids, indicating the need of antioxidative compounds. The action of polyamines jointly tseemed to be benefic for the shooting of micropropagated Aloe vera.
Resumo:
Th1 cells, in cooperation with activated macrophages, are required to overcome Yersinia enterocolitica infection in mice. The pathway macrophages utilize to metabolize arginine can alter the outcome of inflammation in different ways. The objective of this study was to verify the pattern of macrophages activation in Y. enterocolitica infection of BALB/c (Yersinia-susceptible) and C57BL/6 (Yersinia-resistant) mice. Both strains of mice were infected with Y. enterocolitica O:8 WA 2707. Peritoneal macrophages and spleen cells were obtained on the 1st, 3rd and 5th day post-infection. The iNOS and the arginase activities were assayed in supernatants of macrophage cultures, by measuring their NO/citrulline and ornithine products, respectively. TGFβ-1 production was also assayed. The Th1 and Th2 responses were evaluated in supernatants of lymphocyte cultures, by IFN-γ and IL-4 production. Our results showed that in the early phase of Y. enterocolitica infection (1st and 3rd day), the macrophages from C57BL/6 mice produced higher levels of NO/citrulline and lower levels of ornithine than macrophages from BALB/c mice. The infection with Y. enterocolitica leads to an increase in the TGF-β1 and IL-4 production by BALB/c mice and to an increase in the IFN-γ levels produced by C57BL/6 mice. These results suggest that Y. enterocolitica infection leads to the modulation of M1 macrophages in C57Bl/6 mice, and M2 macrophages in BALB/c mice. The predominant macrophage population (M1 or M2) at the 1st and 3rd day of infection thus seems to be important in determining Y. enterocolitica susceptibility or resistance.
Resumo:
The aim of this study was to determine the serum activities of enzymes aspartate aminotransferase, creatine kinase and lactate dehydrogenase in Arabian horses submitted to exercise on high-speed equine treadmill. Eleven mature Arabian horse were training and submitted to Standard Incremental Exercise Test on high-speed equine treadmill. Venous blood samples were taken before exercise, immediately and 30 min, 60min, 3h, 6h, 24h, 3 days and 5 days after exercise. The serum activity aspartate aminotransferase, creatine kinase and lactate dehydrogenase were determined. The serum activies of AST, CK and LDH increase immediately and returned to baseline value 30 minutes after exercise. The AST enzyme activity increased at 12 hours and 24 hours, CK at 3 hours and 6 hours, and LDH at 24 hours after Standard Incremental Exercise Test.
Resumo:
A Streptomyces was isolated from poultry plant wastewater, showed high keratinolytic activity when cultured on feather meal medium. Optimum keratinolytic activity was observed at 40°C and pH 8.0. The enzyme also showed to be stable between 40 and 60°C. The keratinolytic activity was not inhibited by EDTA, DMSO and Tween 80. On the other hand, CaCl2, ZnCl2, and BaCl2 slightly inhibited the keratinolytic activity. The Streptomyces isolated might be useful in leather, keratin waste treatment, animal feeding industry, and also cosmetic industry. © 2008 Academic Journals.
Resumo:
Background. An interaction between lectins from marine algae and PLA 2 from rattlesnake was suggested some years ago. We, herein, studied the effects elicited by a small isolectin (BTL-2), isolated from Bryothamnion triquetrum, on the pharmacological and biological activities of a PLA 2 isolated from rattlesnake venom (Crotalus durissus cascavella), to better understand the enzymatic and pharmacological mechanisms of the PLA 2 and its complex. Results. This PLA2 consisted of 122 amino acids (approximate molecular mass of 14 kDa), its pI was estimated to be 8.3, and its amino acid sequence shared a high degree of similarity with that of other neurotoxic and enzymatically-active PLA2s. BTL-2 had a molecular mass estimated in approximately 9 kDa and was characterized as a basic protein. In addition, BTL-2 did not exhibit any enzymatic activity. The PLA2 and BTL-2 formed a stable heterodimer with a molecular mass of approximately 24-26 kDa, estimated by molecular exclusion HPLC. In the presence of BTL-2, we observed a significant increase in PLA2 activity, 23% higher than that of PLA2 alone. BTL-2 demonstrated an inhibition of 98% in the growth of the Gram-positive bacterial strain, Clavibacter michiganensis michiganensis (Cmm), but only 9.8% inhibition of the Gram-negative bacterial strain, Xanthomonas axonopodis pv passiflorae (Xap). PLA2 decreased bacterial growth by 27.3% and 98.5% for Xap and Cmm, respectively, while incubating these two proteins with PLA2-BTL-2 inhibited their growths by 36.2% for Xap and 98.5% for Cmm. PLA2 significantly induced platelet aggregation in washed platelets, whereas BTL-2 did not induce significant platelet aggregation in any assay. However, BTL-2 significantly inhibited platelet aggregation induced by PLA2. In addition, PLA 2 exhibited strong oedematogenic activity, which was decreased in the presence of BTL-2. BTL-2 alone did not induce oedema and did not decrease or abolish the oedema induced by the 48/80 compound. Conclusion. The unexpected results observed for the PLA2-BTL-2 complex strongly suggest that the pharmacological activity of this PLA2 is not solely dependent on the presence of enzymatic activity, and that other pharmacological regions may also be involved. In addition, we describe for the first time an interaction between two different molecules, which form a stable complex with significant changes in their original biological action. This opens new possibilities for understanding the function and action of crude venom, an extremely complex mixture of different molecules. © 2008 Oliveira et al; licensee BioMed Central Ltd.
Resumo:
Background: Airway eosinophilia is considered a central event in the pathogenesis of asthma. The toxic components of eosinophils are thought to be important in inducing bronchial mucosal injury and dysfunction. Previous studies have suggested an interaction between nitric oxide (NO) and chemokines in modulating eosinophil functions, but this is still conflicting. In the present study, we have carried out functional assays (adhesion and degranulation) and flow cytometry analysis of adhesion molecules (VLA-4 and Mac-1 expression) to evaluate the interactions between NO and CC-chemokines (eotaxin and RANTES) in human eosinophils. Methods: Eosinophils were purified using a percoll gradient followed byimmunomagnetic cell separator. Cell adhesion and degranulation were evaluated by measuring eosinophil peroxidase (EPO) activity, whereas expression of Mac-1 and VLA-4 was detected using flow cytometry. Results: At 4 h incubation, both eotaxin (100 ng/ml) and RANTES (1000 ng/ml) increased by 133% and 131% eosinophil adhesion, respectively. L-NAME alone (but not D-NAME) also increased the eosinophil adhesion, but the co-incubation of L-NAME with eotaxin or RANTES did not further affect the increased adhesion seen with chemokines alone. In addition, L-NAME alone (but not D-NAME) caused a significant cell degranulation, but it did not affect the CC-chemokine-induced cell degranulation. Incubation of eosinophils with eotaxin or RANTES, in absence or presence of L-NAME, did not affect the expression of VLA-4 and Mac-1 on eosinophil surface. Eotaxin and RANTES (100 ng/ml each) also failed to elevate the cyclic GMP levels above baseline in human eosinophils. Conclusion: Eotaxin and RANTES increase the eosinophil adhesion to fibronectin-coated plates and promote cell degranulation by NO-independent mechanisms. The failure of CC-chemokines to affect VLA-4 and Mac-1 expression suggests that changes in integrin function (avidity or affinity) are rather involved in the enhanced adhesion. © 2008 Lintomen et al; licensee BioMed Central Ltd.
Resumo:
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A2 (PLA2s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing Mr ∼ 14,000 for the monomer and 28,000 Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA2s from snake venoms, MTX-I belonging to Asp49 PLA2 class, enzymatically active, and MTX-II to Lys49 PLA2s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA2 and anticoagulant activities, corroborating the importance of residue His48 and Ca2+ ions for the enzymatic catalysis. Both PLA2s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA2 proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer. © 2008 Elsevier Inc. All rights reserved.
Resumo:
The effect of phosphorus levels on seedling growth, dry and fresh matter production, and in vivo acid phosphatase activity was studied in Lychnophora ericoides cultivated during 130 days after transplanting in a greenhouse. Experimental design was completely randomized, with four P 2O 5 levels (0; 40; 80; 160 mg dm -3 as triple superphosphate) and five replicates of four plants each. The used soil was dystrophic acid dark red latosol. Lychnophora ericoides is responsive to phosphate fertilization with modification in daily relative growth rate, dry matter production and distribution among the plant parts. Acid phosphatase activity had significant and negative correlation with total, leaf and stem dry matter production, as well as with P levels accumulated in the leaf tissue. On the other hand, acid phosphatase activity had significant and positive correlation with root/shoot ratio.
Resumo:
Pectinases are a big group of enzymes that break down pectic polysaccharides of plant tissues into simpler molecules like galacturonic acids. It has long been used to increase yields and clarity of fruit juices. Since pectic substances are a very complex macromolecule group, various pectinolytic enzymes are required to degrade it completely. These enzymes present differences in their cleavage mode and specificity being basically classified into two main groups that act on pectin smooth regions or on pectin hairy regions. Pectinases are one of the most widely distributed enzymes in bacteria, fungi and plants. This review describes the pectinolytic enzymes and their substrates, the microbial pectinase production and characterization, and the industrial application of these enzymes. © Pedrolli et al.; Licensee Bentham Open.
Resumo:
Background: Hematophagous insects digest large amounts of host hemoglobin and release heme inside their guts. In Rhodnius prolixus, hemoglobin-derived heme is detoxified by biomineralization, forming hemozoin (Hz). Recently, the involvement of the R. prolixus perimicrovillar membranes in Hz formation was demonstrated. Methodology/Principal Findings: Hz formation activity of an α-glucosidase was investigated. Hz formation was inhibited by specific α-glucosidase inhibitors. Moreover, Hz formation was sensitive to inhibition by Diethypyrocarbonate, suggesting a critical role of histidine residues in enzyme activity. Additionally, a polyclonal antibody raised against a phytophagous insect α-glucosidase was able to inhibit Hz formation. The α-glucosidase inhibitors have had no effects when used 10 h after the start of reaction, suggesting that α-glucosidase should act in the nucleation step of Hz formation. Hz formation was seen to be dependent on the substrate-binding site of enzyme, in a way that maltose, an enzyme substrate, blocks such activity. dsRNA, constructed using the sequence of α-glucosidase gene, was injected into R. prolixus females' hemocoel. Gene silencing was accomplished by reduction of both α-glucosidase and Hz formation activities. Insects were fed on plasma or hemin-enriched plasma and gene expression and activity of α-glucosidase were higher in the plasma plus hemin-fed insects. The deduced amino acid sequence of α-glucosidase shows a high similarity to the insect α-glucosidases, with critical histidine and aspartic residues conserved among the enzymes. Conclusions/Significance: Herein the Hz formation is shown to be associated to an a-glucosidase, the biochemical marker from Hemipteran perimicrovillar membranes. Usually, these enzymes catalyze the hydrolysis of glycosidic bond. The results strongly suggest that α-glucosidase is responsible for Hz nucleation in the R. prolixus midgut, indicating that the plasticity of this enzyme may play an important role in conferring fitness to hemipteran hematophagy, for instance. © 2009 Mury et al.
Resumo:
Cyclodextrin glycosyltransferase (CGTase) activity was produced by the Bacillus sp., subgroup alcalophilus in a culture medium containing cassava starch. A central composite design and response surface methodology were used to study the influence of carbon source (cassava starch), nitrogen sources (yeast extract and tryptone) and sodium carbonate in the production medium. Assays were performed in 300 mL Erlenmeyer flasks containing 100 mL of production medium maintained in a shaker at 150 rpm at 35±1°C for 72 h of fermentation. The independent variables [0.75% cassava starch, nitrogen sources (0.375% yeast extract and 0.375% tryptone) and 1% Na2CO3] produced an enzyme activity of 96.07 U mL-1.© Academic Journals Inc.
Resumo:
Acid phosphatases (AcPs) are known to provide phosphate to tissues that have high energy requirements, especially during development, growth and maturation. During spermatogenesis AcP activity is manifested in heterophagous lysosomes of Sertoli cells. This phagocytic function appears to be hormone-independent. We examined the expression pattern of AcP during the reproductive period of four species belonging to different vertebrate groups: Tilapia rendalli (Teleostei, Cichlidae), Dendropsophus minutus (Amphibia, Anura), Meriones unguiculatus (Mammalia, Rodentia), and Oryctolagus cuniculus (Mammalia, Lagomorpha). To demonstrate AcP activity, cryosections were processed for enzyme histochemistry by a modification of the method of Gömöri. AcP activity was similar in the testes of these four species. Testes of T. rendalli, D. minutus and M. unguiculatus showed an intense reaction in the Sertoli cell region. AcP activity was detected in the testes of D. minutus and O. cuniculus in seminiferous epithelium regions, where cells are found in more advanced stages of development. The seminiferous epithelium of all four species exhibited AcP activity, mainly in the cytoplasm of either Sertoli cells or germ cells. These findings reinforce the importance of AcP activity during the spermatogenesis process in vertebrates. © FUNPEC-RP.
Resumo:
According to the environmental legislation enforced in Brazil and the process of marketing globalization, the commitment of the nations to the preservation of the environment is intensified. By reason of nature's negative responses to its intensive use, awareness then appears from enterprises and agencies about how the anthropic action over the environment needs to be minimized, becoming a challenge: development and sustainability. In this context, the present work made use of the Mechanical tillage of the soil, as a technique to apply, in a large scale, the strategies and methods to recover mined areas that were researched and developed experimentally by researchers on a theme project about the recovering of degraded areas. This work was conducted in the Amazon ecosystem, inside the Jamari National Forest - Rondônia (FLONA do Jamari), in deactivated cassiterite mines. The objectives of this work were to: Develop a computational program capable of managing a database and assist in the selection of machines and preparation methods to execute the operations of topographical reconstitution and tillage of surfaces in areas degraded by the mineral exploitation of cassiterite. Use the program that was developed in the planning of costs and operational development, for the operations required in the strategies for recovering the areas. Analyze the vegetable productivity in the mobilized areas and the quality of the superficial mobilization, making use of indicators and tillage methods. Evaluate, through biological indicators, the efficiency of the recovery strategies and techniques that were mechanized and applied on the location. The results showed that the developed computational program (SGMAD) served the methodological purposes (the analysis of costs and operational capacity) established for the planning and the selection of the tillage machines and methods in the areas of mineral exploitation of cassiterite. The applied methods and quality of the superficial mobilization were significant to the development of leguminous plants in the areas. The use of biological indicators (microbial biomass and enzymatic activity) in the evaluation of the adopted techniques and strategies revealed that the planting of leguminous plants and their posterior incorporation have been promoting gradually positive alterations in some of the analyzed soil/substract parameters. © 2010 WIT Press.
Resumo:
Phospholipases D (PLDs) are principally responsible for the local and systemic effects of Loxosceles envenomation including dermonecrosis and hemolysis. Despite their clinical relevance in loxoscelism, to date, only the SMase I from Loxosceles laeta, a class I member, has been structurally characterized. The crystal structure of a class II member from Loxosceles intermedia venom has been determined at 1.7. Å resolution. Structural comparison to the class I member showed that the presence of an additional disulphide bridge which links the catalytic loop to the flexible loop significantly changes the volume and shape of the catalytic cleft. An examination of the crystal structures of PLD homologues in the presence of low molecular weight compounds at their active sites suggests the existence of a ligand-dependent rotamer conformation of the highly conserved residue Trp230 (equivalent to Trp192 in the glycerophosphodiester phosphodiesterase from Thermus thermophofilus, PDB code: 1VD6) indicating its role in substrate binding in both enzymes. Sequence and structural analyses suggest that the reduced sphingomyelinase activity observed in some class IIb PLDs is probably due to point mutations which lead to a different substrate preference. © 2011 Elsevier Inc.
Resumo:
Fossil fuels such as diesel are being gradually replaced by biodiesel, a renewable energy source, cheaper and less polluting. However, little is known about the toxic effects of this new energy source on aquatic organisms. Thus, we evaluated biochemical biomarkers related to oxidative stress in Nile tilapia (Oreochromis niloticus) after two and seven exposure days to diesel and pure biodiesel (B100) and blends B5 and B20 at concentrations of 0.01 and 0.1mLL -1. The hepatic ethoxyresorufin-O-deethylase activity was highly induced in all groups, except for those animals exposed to B100. There was an increase in lipid peroxidation in liver and gills in the group exposed to the higher concentration of B5. All treatments caused a significant increase in the levels of 1-hydroxypyrene excreted in the bile after 2 and 7d, except for those fish exposed to B100. The hepatic glutathione-S-transferase increased after 7d in animals exposed to the higher concentration of diesel and in the gill of fish exposed to the higher concentration of pure diesel and B5, but decreased for the two tested concentrations of B100. Superoxide dismutase, catalase and glutathione peroxidase also presented significant changes according to the treatments for all groups, including B100. Biodiesel B20 in the conditions tested had fewer adverse effects than diesel and B5 for the Nile tilapia, and can be suggested as a less harmful fuel in substitution to diesel. However, even B100 could activate biochemical responses in fish, at the experimental conditions tested, indicating that this fuel can also represent a risk to the aquatic biota. © 2011 Elsevier Ltd.