913 resultados para ENZYME SECRETION
Resumo:
Renin is an enzyme involved in the stepwise generation of angiotensin II. Juxtaglomerular cells are the main source of plasma renin, but renin activity has been detected in other cell types. In the present study we evaluated the presence of renin mRNA in adult male Wistar rat and mouse (C-57 Black/6) mesangial cells (MC) and their ability to process, store and release both the active and inactive forms of the enzyme. Active renin and total renin content obtained after trypsin treatment were estimated by angiotensinogen consumption analyzed by SDS-PAGE electrophoresis and quantified by angiotensin I generation by HPLC. Renin mRNA, detected by RT-PCR, was present in both rat and mouse MC under basal conditions. Active renin was significantly higher (P<0.05) in the cell lysate (43.5 ± 5.7 ng h-1 10(6) cells) than in the culture medium (12.5 ± 2.5 ng h-1 10(6) cells). Inactive prorenin content was similar for the intra- and extracellular compartments (9.7 ± 3.1 and 3.9 ± 0.9 ng h-1 10(6) cells). Free active renin was the predominant form found in both cell compartments. These results indicate that MC in culture are able to synthesize and translate renin mRNA probably as inactive prorenin which is mostly processed to active renin inside the cell. MC secrete both forms of the enzyme but at a lower level compared with intracellular content, suggesting that the main role of renin synthesized by MC may be the intracellular generation of angiotensin II.
Resumo:
Osteoporosis is a common manifestation of Cushing's syndrome, but the mechanisms responsible for this abnormality have not been defined. With the objective of analyzing parathyroid hormone (PTH) secretion in chronic hypercortisolism (CH), we evaluated 11 healthy subjects and 8 patients with CH, 6 with Cushing's disease and 2 with adrenal adenoma. These volunteers were submitted to tests of PTH stimulation through hypocalcemia (EDTA), PTH suppression through hypercalcemia (iv and oral calcium), and evaluation of bone mineral density (BMD) by DEXA. During the test of PTH stimulation, the calcium and magnesium concentrations of the normal and CH groups were similar. Patients with CH showed an increased PTH response to the hypocalcemic stimulus compared to controls. PTH values were significantly higher in the CH group at 70 (17.5 ± 3.5 vs 10.2 ± 1.3 pmol/l, P = 0.04), and 120 min (26.1 ± 5.9 vs 11.3 ± 1.9 pmol/l, P = 0.008) of EDTA infusion. The area under the curve for PTH during EDTA infusion was also significantly higher in patients with CH than in normal subjects (1867 ± 453 and 805 ± 148 pmol l-1 2 h-1, P = 0.02). During the test of PTH suppression, calcium, magnesium and PTH levels of the patients with hypercortisolism and controls were similar. BMD was decreased in patients with hypercortisolism in the spine (0.977 ± 0.052 vs 1.205 ± 0.038 g/cm² in controls, P<0.01). In conclusion, our results show that subjects with CH present decreased bone mass mainly in trabecular bone. The use of dynamic tests permitted the detection of increased PTH secretion in response to a hypocalcemic stimulus in CH patients that may probably be involved in the occurrence of osteoporosis in this state.
Resumo:
We investigated the effects of adenosine on prolactin (PRL) secretion from rat anterior pituitaries incubated in vitro. The administration of 5-N-methylcarboxamidoadenosine (MECA), an analog agonist that preferentially activates A2 receptors, induced a dose-dependent (1 nM to 1 µM) increase in the levels of PRL released, an effect abolished by 1,3-dipropyl-7-methylxanthine, an antagonist of A2 adenosine receptors. In addition, the basal levels of PRL secretion were decreased by the blockade of cyclooxygenase or lipoxygenase pathways, with indomethacin and nordihydroguaiaretic acid (NDGA), respectively. The stimulatory effects of MECA on PRL secretion persisted even after the addition of indomethacin, but not of NDGA, to the medium. MECA was unable to stimulate PRL secretion in the presence of dopamine, the strongest inhibitor of PRL release that works by inducing a decrease in adenylyl cyclase activity. Furthermore, the addition of adenosine (10 nM) mimicked the effects of MECA on PRL secretion, an effect that persisted regardless of the presence of LiCl (5 mM). The basal secretion of PRL was significatively reduced by LiCl, and restored by the concomitant addition of both LiCl and myo-inositol. These results indicate that PRL secretion is under a multifactorial regulatory mechanism, with the participation of different enzymes, including adenylyl cyclase, inositol-1-phosphatase, cyclooxygenase, and lipoxygenase. However, the increase in PRL secretion observed in the lactotroph in response to A2 adenosine receptor activation probably was mediated by mechanisms involving regulation of adenylyl cyclase, independent of membrane phosphoinositide synthesis or cyclooxygenase activity and partially dependent on lipoxygenase arachidonic acid-derived substances.
Resumo:
The aim of the present study was to investigate the effects of converting enzyme inhibition by captopril on ECG parameters in aged rats. Four-month-old male rats received captopril dissolved in tap water (0.5 mg/l) or tap water for 2 or 20 months. At the end of treatment, under anesthesia, RR and PR interval, P wave and QRS duration, QT and corrected QT interval were measured in all animals. On the following day, chronic ECG (lead II) recordings were performed to quantify supraventricular (SVPB) or ventricular premature beats (VPB). After sacrifice, the hearts were removed and weighed. RR interval was similar in young and untreated aged rats, but significantly larger in aged rats treated with captopril. P wave and QRS length did not differ among groups. PR interval was significantly larger in old than in young rats and was not affected by captopril. Corrected QT interval was larger in aged than in young rats (117 ± 4 vs 64 ± 6 ms, P<0.05) and was reduced by captopril (71 ± 6 ms, P<0.05). VPB were absent in young rats and highly frequent in untreated old animals (8.4 ± 3.0/30 min). Captopril significantly reduced VPB in old rats (0.3 ± 0.1/30 min, P<0.05). The cardiac hypertrophy found in untreated aged rats was prevented by captopril (3.44 ± 0.14 vs 3.07 ± 0.10 mg/g, P<0.05). The beneficial effects of angiotensin converting enzyme inhibition on the rat heart during the aging process are remarkable.
Resumo:
The central nervous system plays an important role in the control of renal sodium excretion. We present here a brief review of physiologic regulation of hydromineral balance and discuss recent results from our laboratory that focus on the participation of nitrergic, vasopressinergic, and oxytocinergic systems in the regulation of water and sodium excretion under different salt intake and hypertonic blood volume expansion (BVE) conditions. High sodium intake induced a significant increase in nitric oxide synthase (NOS) activity in the medial basal hypothalamus and neural lobe, while a low sodium diet decreased NOS activity in the neural lobe, suggesting that central NOS is involved in the control of sodium balance. An increase in plasma concentrations in vasopressin (AVP), oxytocin (OT), atrial natriuretic peptide (ANP), and nitrate after hypertonic BVE was also demonstrated. The central inhibition of NOS by L-NAME caused a decrease in plasma AVP and no change in plasma OT or ANP levels after BVE. These data indicate that the increase in AVP release after hypertonic BVE depends on nitric oxide production. In contrast, the pattern of OT secretion was similar to that of ANP secretion, supporting the view that OT is a neuromodulator of ANP secretion during hypertonic BVE. Thus, neurohypophyseal hormones and ANP are secreted under hypertonic BVE in order to correct the changes induced in blood volume and osmolality, and the secretion of AVP in this particular situation depends on NOS activity.
Resumo:
To identify early metabolic abnormalities in type 2 diabetes mellitus, we measured insulin secretion, sensitivity to insulin, and hepatic insulin extraction in 48 healthy normal glucose-tolerant Brazilians, first-degree relatives of type 2 diabetic patients (FH+). Each individual was matched for sex, age, weight, and body fat distribution with a person without history of type 2 diabetes (FH-). Both groups were submitted to a hyperglycemic clamp procedure (180 mg/dl). Insulin release was evaluated in its two phases. The first was calculated as the sum of plasma insulin at 2.5, 5.0, 7.5, and 10.0 min after the beginning of glucose infusion, and the second as the mean plasma insulin level in the third hour of the clamp procedure. Insulin sensitivity index (ISI) was the mean glucose infusion rate in the third hour of the clamp experiment divided by the mean plasma insulin concentration during the same period of time. Hepatic insulin extraction was determined under fasting conditions and in the third hour of the clamp procedure as the ratio between C-peptide and plasma insulin levels. FH+ individuals did not differ from FH- individuals in terms of the following parameters [median (range)]: a) first-phase insulin secretion, 174 (116-221) vs 207 (108-277) µU/ml, b) second-phase insulin secretion, 64 (41-86) vs 53 (37-83) µU/ml, and c) ISI, 14.8 (9.0-20.8) vs 16.8 (9.0-27.0) mg kg-1 min-1/µU ml-1. Hepatic insulin extraction in FH+ subjects was similar to that of FH- ones at basal conditions (median, 0.27 vs 0.27 ng/µU) and during glucose infusion (0.15 vs 0.15 ng/µU). Normal glucose-tolerant Brazilian FH+ individuals well-matched with FH- ones did not show defects of insulin secretion, insulin sensitivity, or hepatic insulin extraction as tested by hyperglycemic clamp procedures.
Resumo:
Dipeptidyl peptidase IV (DPP-IV; CD26) (EC 3.4.14.5) is a membrane-anchored ectoenzyme with N-terminal exopeptidase activity that preferentially cleaves X-Pro-dipeptides. It can also be spontaneously released to act in the extracellular environment or associated with the extracellular matrix. Many hematopoietic cytokines and chemokines contain DPP-IV-susceptible N-terminal sequences. We monitored DPP-IV expression and activity in murine bone marrow and liver stroma cells which sustain hematopoiesis, myeloid precursors, skin fibroblasts, and myoblasts. RT-PCR analysis showed that all these cells produced mRNA for DPP-IV. Partially purified protein reacted with a commercial antibody to CD26. The K M values for Gly-Pro-p-nitroanilide ranged from 0.43 to 0.98 mM for the membrane-associated enzyme of connective tissue stromas, and from 6.76 to 8.86 mM for the enzyme released from the membrane, corresponding to a ten-fold difference, but only a two-fold difference in K M was found in myoblasts. K M of the released soluble enzyme decreased in the presence of glycosaminoglycans, nonsulfated polysaccharide polymers (0.8-10 µg/ml) or simple sugars (320-350 µg/ml). Purified membrane lipid rafts contained nearly 3/4 of the total cell enzyme activity, whose K M was three-fold decreased as compared to the total cell membrane pool, indicating that, in the hematopoietic environment, DPP-IV activity is essentially located in the lipid rafts. This is compatible with membrane-associated events and direct cell-cell interactions, whilst the long-range activity depending upon soluble enzyme is less probable in view of the low affinity of this form.
Resumo:
Mechanical forces including pressure and shear stress play an important role in vascular homeostasis via the control of the production and release of a variety of vasoactive factors. An increase in vascular shear stress is accompanied by nitric oxide (NO) release and NO synthase activation. Previously, we have demonstrated that shear stress induces angiotensin-I converting enzyme (ACE) down-regulation in vivo and in vitro. In the present study, we determined whether NO participates in the shear stress-induced ACE suppression response. Rabbit aortic endothelial cells were evaluated using the NO synthase inhibitor L-NAME, and two NO donors, diethylamine NONOate (DEA/NO) and sodium nitroprusside (SNP). Under static conditions, incubation of endothelial cells with 1 mM L-NAME for 18 h increased ACE activity by 27% (from 1.000 ± 0.090 to 1.272 ± 0.182) while DEA/NO and SNP (0.1, 0.5 and 1 mM) caused no change in ACE activity. Interestingly, ACE activity was down-regulated similarly in the presence or absence of L-NAME (delta(0 mM) = 0.26 ± 0.055, delta(0.1 mM) = 0.21 ± 0.22, delta(1 mM) = 0.36 ± 0.13) upon 18 h shear stress activation (from static to 15 dyn/cm²). Taken together, these results indicate that NO can participate in the maintenance of basal ACE levels in the static condition but NO is not associated with the shear stress-induced inactivation of ACE.
Resumo:
The effect of the skin secretion of the amphibian Siphonops paulensis was investigated by monitoring the changes in conductance of an artificial planar lipid bilayer. Skin secretion was obtained by exposure of the animals to ether-saturated air, and then rinsing the animals with distilled water. Artificial lipid bilayers were obtained by spreading a solution of azolectin over an aperture of a Delrin cup inserted into a cut-away polyvinyl chloride block. In 9 of 12 experiments, the addition of the skin secretion to lipid bilayers displayed voltage-dependent channels with average unitary conductance of 258 ± 41.67 pS, rather than nonspecific changes in bilayer conductance. These channels were not sensitive to 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid or tetraethylammonium ion, but the experimental protocol used does not permit us to specify their characteristics.
Resumo:
The purpose of the present study was to modulate the secretion of insulin and glucagon in Beagle dogs by stimulation of nerves innervating the intact and partly dysfunctional pancreas. Three 33-electrode spiral cuffs were implanted on the vagus, splanchnic and pancreatic nerves in each of two animals. Partial dysfunction of the pancreas was induced with alloxan. The nerves were stimulated using rectangular, charge-balanced, biphasic, and constant current pulses (200 µs, 1 mA, 20 Hz, with a 100-µs delay between biphasic phases). Blood samples from the femoral artery were drawn before the experiment, at the beginning of stimulation, after 5 min of stimulation, and 5 min after the end of stimulation. Radioimmunoassay data showed that in the intact pancreas stimulation of the vagal nerve increased insulin (+99.2 µU/ml) and glucagon (+18.7 pg/ml) secretion and decreased C-peptide secretion (-0.15 ng/ml). Splanchnic nerve stimulation increased insulin (+1.7 µU/ml), C-peptide (+0.01 ng/ml), and glucagon (+50 pg/ml) secretion, whereas pancreatic nerve stimulation did not cause a marked change in any of the three hormones. In the partly dysfunctional pancreas, vagus nerve stimulation increased insulin (+15.5 µU/ml), glucagon (+11 pg/ml), and C-peptide (+0.03 ng/ml) secretion. Splanchnic nerve stimulation reduced insulin secretion (-2.5 µU/ml) and increased glucagon (+58.7 pg/ml) and C-peptide (+0.39 ng/ml) secretion, and pancreatic nerve stimulation increased insulin (+0.2 µU/ml), glucagon (+5.2 pg/ml), and C-peptide (+0.08 ng/ml) secretion. It was concluded that vagal nerve stimulation can significantly increase insulin secretion for a prolonged period of time in intact and in partly dysfunctional pancreas.
Resumo:
Induced oral tolerance to mucosal-exposed antigens in immunized animals is of particular interest for the development of immunotherapeutic approaches to human allergic diseases. This is a unique feature of mucosal surfaces which represent the main contact interface with the external environment. However, the influence of oral tolerance on specific and natural polyreactive IgA antibodies, the major defense mechanism of the mucosa, is unknown. We have shown that oral administration of an extract of the dust mite Dermatophagoides pteronyssinus (Dp) to primed mice caused down-regulation of IgE responses and an increase in tumor growth factor-ß secretion. In the present study, we observed that primed inbred female A/Sn mice (8 to 10 weeks old) fed by gavage a total weight of 1.0-mg Dp extract on the 6th, 7th and 8th days post-immunization presented normal secretion of IL-4 and IL-10 in gut-associated lymphoid tissue and a decreased production of interferon gamma induced by Dp in the draining lymph nodes (13,340 ± 3,519 vs 29,280 ± 2,971 pg/ml). Mice fed the Dp extract also showed higher levels of serum anti-Dp IgA antibodies and an increase of IgA-secreting cells in mesenteric lymph nodes (N = 10), reflecting an increase in total fecal IgA antibodies (N = 10). The levels of secretory anti-Dp IgA antibodies increased after re-immunization regardless of Dp extract feeding. Oral tolerance did not interfere with serum or secretory IgA antibody reactivity related to self and non-self antigens. These results suggest that induction of oral tolerance to a Dp extract in sensitized mice triggered different regulatory mechanisms which inhibited the IgE response and stimulated systemic and secretory IgA responses, preserving the natural polyreactive IgA antibody production.
Resumo:
Studies of behavior, endocrinology and physiology have described experiments in which animals housed in groups or in isolation were normally tested individually. The isolation of the animal from its group for testing is perhaps the most common situation used today in experimental procedures, i.e., there is no consideration of the acute stress which occurs when the animal is submitted to a situation different from that it is normally accustomed to, i.e., group living. In the present study, we used 90 male 120-day-old rats (Rattus norvegicus) divided into 5 groups of 18 animals, which were housed 3 per cage, in a total of 6 cages. The animals were tested individually or with their groups for exploratory behavior. Hormones were determined by radioimmunoassay using specific kits. The results showed statistically significant differences between testing conditions in terms of behavior and of adrenocorticotrophic hormone (ACTH: from 116.8 ± 15.27 to 88.77 ± 18.74 when in group and to 159.6 ± 11.53 pg/ml when isolated), corticosterone (from 561.01 ± 77.04 to 1036.47 ± 79.81 when in group and to 784.71 ± 55.88 ng/ml when isolated), luteinizing hormone (from 0.84 ± 0.09 to 0.58 ± 0.05 when in group and to 0.52 ± 0.06 ng/ml when isolated) and prolactin (from 5.18 ± 0.33 to 9.37 ± 0.96 when in group and to 10.18 ± 1.23 ng/ml when isolated) secretion, but not in terms of follicle-stimulating hormone or testosterone secretion. The most important feature observed was that in each cage there was one animal with higher ACTH levels than the other two; furthermore, the exploratory behavior of this animal was different, indicating the occurrence of almost constant higher vigilance in this animal (latency to leave the den in group: 99.17 ± 34.95 and isolated: 675.3 ± 145.3 s). The data indicate that in each group there is an animal in a peculiar situation and its behavior can be detected by ACTH determination in addition to behavioral performance.
Resumo:
Hepatitis A virus (HAV) replicates relatively slowly in cell culture without a cytopathic effect, a fact that limits the use of tissue culture assays. The radioimmunofocus assay is the standard method for HAV titration, although it is labor intensive and requires the use of radioisotopes. A simple, rapid and objective infectivity assay based on an in situ enzyme immunoassay (EIA) is described here for a Brazilian cell culture-adapted HAV strain (HAF-203). The assay uses a peroxidase-labeled polyclonal antibody to fixed monolayers as an indicator of infection. EIA may be completed within 7 days using serial 5-fold dilutions of the virus, yielding a titer of 5.024 log 50% tissue culture infective dose (TCID50)/ml for HAF-203. This technique had a detection limit of 1.1 log TCID50/ml and the specificity was demonstrated by detecting no reaction on the columns of uninfected wells. The reproducibility (with intra- and inter-assay coefficients of variation ranging from 1.9 to 3.8% and from 3.5 to 9.9%, respectively) and quantitation of the assay were demonstrated by close agreement in virus infectivity titers among different assays of the same amount of virus and between assays of different amounts of virus. Furthermore, this assay does not require the use of radiolabeled antibodies. We describe here an efficient EIA that is highly reproducible and that could be used to monitor HAV growth in cell culture and to determine the quantity of HAV antigen needed for diagnostic assays. This is the first report of the infectious titer of the Brazilian cell culture-adapted HAV strain (HAF-203).
Resumo:
We characterized the role of potential cAMP-responsive elements (CRE) in basal and in induced angiotensin converting enzyme (ACE) gene promoter activity in order to shed light on the regulation of somatic ACE expression. We identified stimulators and repressors of basal expression between 122 and 288 bp and between 415 and 1303 bp upstream from the transcription start site, respectively, using a rabbit endothelial cell (REC) line. These regions also contained elements associated with the response to 8BrcAMP. When screening for CRE motifs we found pCRE, a proximal sequence between 209 and 222 bp. dCRE, a distal tandem of two CRE-like sequences conserved between rats, mice and humans, was detected between 834 and 846 bp. Gel retardation analysis of nuclear extracts of REC indicated that pCRE and dCRE bind to the same protein complexes as bound by a canonical CRE. Mutation of pCRE and dCRE in REC established the former as a positive element and the latter as a negative element. In 293 cells, a renal cell line, pCRE and dCRE are negative regulators. Co-transfection of ATF-2 or ATF-2 plus c-Jun repressed ACE promoter activity, suggesting that the ACE gene is controlled by cellular stress. Although mapping of cAMP responsiveness was consistent with roles for pCRE and dCRE, mutation analysis indicated that they were not required for cAMP responsiveness. We conclude that the basal activity of the somatic ACE promoter is controlled by proximal and distal CREs that can act as enhancers or repressors depending on the cell context.
Resumo:
The stabilizing effects of staphylococcal nuclease (Nuc) and of a synthetic propeptide (LEISSTCDA, hereafter called LEISS) on the production of a model food allergen, bovine ß-lactoglobulin (BLG), in Lactococcus lactis were investigated. The fusion of Nuc to BLG (Nuc-BLG) results in higher production and secretion of the hybrid protein. When LEISS was fused to BLG, the production of the resulting protein LEISS-BLG was only slightly improved compared to the one obtained with Nuc-BLG. However, the secretion of LEISS-BLG was dramatically enhanced (~10- and 4-fold higher than BLG and Nuc-BLG, respectively). Finally, the fusion of LEISS to Nuc-BLG resulting in the protein LEISS-Nuc-BLG led to the highest production of the hybrid protein, estimated at ~8 µg/ml (~2-fold higher than Nuc-BLG). In conclusion, the fusions described here led to the improvement of the production and secretion of BLG. These tools will be used to modulate the immune response against BLG via delivery of recombinant lactococci at the mucosal level, in a mouse model of cow's milk allergy.