993 resultados para ELECTRICAL TRANSPORT
Resumo:
The Queensland Transport Industry Workplace Health Intervention project was a Participatory Action Research (PAR) project to investigate the effectiveness of workplace-based nutrition and physical activity health promotion interventions for truck drivers in transport industry workplaces in south-east Queensland. The project was conducted by a research team at the Queensland University of Technology (QUT), and was funded by the Queensland Government under the Healthier.Happier.Workplaces initiative.
Resumo:
This paper is concerned with the interfacial thermal resistance for polymer composites reinforced by various covalently functionalised graphene. By using molecular dynamics simulations, the obtained results show that the covalent functionalisation in graphene plays a significant role in reducing the graphene-paraffin interfacial thermal resistance. This reduction is dependent on the coverage and type of functional groups. Among the various functional groups, butyl is found to be the most effective in reducing the interfacial thermal resistance, followed by methyl, phenyl and formyl. The other functional groups under consideration such as carboxyl, hydroxyl and amines are found to produce negligible reduction in the interfacial thermal resistance. For multilayer graphene with a layer number up to four, the interfacial thermal resistance is insensitive to the layer number. The effects of the different functional groups and the layer number on the interfacial thermal resistance are also elaborated using the vibrational density of states of the graphene and the paraffin matrix. The present findings provide useful guidelines in the application of functionalised graphene for practical thermal management.
Resumo:
Roads and road infrastructure will be faced with multiple challenges over the coming decades – challenges that in many ways bear little resemblance to those previously faced - and as such will require new approaches. The opportunity exists to transform the way road infrastructure is conceived and constructed, as a key part of the process of assisting society to respond to climate change and reduce other environmental pressures. Innovations in road construction, use and management in order to manage these changes can now be seen. Scenario planning is one tool that can take into account emerging challenges, develop or adopt new approaches, and thus help this transformation to occur. The paper explores scenario planning methodologies, global innovations and trends in road construction and maintenance and the findings from stakeholder workshops in Brisbane and Perth. It highlights key opportunities for road agencies to use scenarios to enable planning that, in the face of future uncertainties, facilitates appropriate responses.
Resumo:
Background Understanding how different socioeconomic indicators are associated with transport modes provide insight into which interventions might contribute to reducing socioeconomic inequalities in health. The purpose of this study was to examine associations between neighbourhood-level socioeconomic disadvantage, individual-level socioeconomic position (SEP) and usual transport mode. Methods This investigation included 11,036 residents from 200 neighbourhoods in Brisbane, Australia. Respondents self-reported their usual transport mode (car or motorbike, public transport, walking or cycling). Indicators for individual-level SEP were education, occupation, and household income; and neighbourhood disadvantage was measured using a census-derived index. Data were analysed using multilevel multinomial logistic regression. High SEP respondents and residents of the most advantaged neighbourhoods who used a private motor vehicle as their usual form of transport was the reference category. Results Compared with driving a motor vehicle, the odds of using public transport were higher for white collar employees (OR1.68, 95%CrI 1.41-2.01), members of lower income households (OR 1.71 95%CrI 1.25-2.30), and residents of more disadvantaged neighbourhoods (OR 1.93, 95%CrI 1.46-2.54); and lower for respondents with a certificate-level education (OR 0.60, 95%CrI 0.49-0.74) and blue collar workers (OR 0.63, 95%CrI 0.50-0.81). The odds of walking for transport were higher for the least educated (OR 1.58, 95%CrI 1.18-2.11), those not in the labour force (OR 1.94, 95%CrI 1.38-2.72), members of lower income households (OR 2.10, 95%CrI 1.23-3.64), and residents of more disadvantaged neighbourhoods (OR 2.73, 95%CrI 1.46-5.24). The odds of cycling were lower among less educated groups (OR 0.31, 95% CrI 0.19-0.48). Conclusion The relationships between socioeconomic characteristics and transport modes are complex, and provide challenges for those attempting to encourage active forms of transportation. Further work is required exploring the individual- and neighbourhood-level mechanisms behind transport mode choice, and what factors might influence individuals from different socioeconomic backgrounds to change to more active transport modes.
Resumo:
Real-world cryptographic protocols such as the widely used Transport Layer Security (TLS) protocol support many different combinations of cryptographic algorithms (called ciphersuites) and simultaneously support different versions. Recent advances in provable security have shown that most modern TLS ciphersuites are secure authenticated and confidential channel establishment (ACCE) protocols, but these analyses generally focus on single ciphersuites in isolation. In this paper we extend the ACCE model to cover protocols with many different sub-protocols, capturing both multiple ciphersuites and multiple versions, and define a security notion for secure negotiation of the optimal sub-protocol. We give a generic theorem that shows how secure negotiation follows, with some additional conditions, from the authentication property of secure ACCE protocols. Using this framework, we analyse the security of ciphersuite and three variants of version negotiation in TLS, including a recently proposed mechanism for detecting fallback attacks.
Resumo:
Lattice-based cryptographic primitives are believed to offer resilience against attacks by quantum computers. We demonstrate the practicality of post-quantum key exchange by constructing cipher suites for the Transport Layer Security (TLS) protocol that provide key exchange based on the ring learning with errors (R-LWE) problem, we accompany these cipher suites with a rigorous proof of security. Our approach ties lattice-based key exchange together with traditional authentication using RSA or elliptic curve digital signatures: the post-quantum key exchange provides forward secrecy against future quantum attackers, while authentication can be provided using RSA keys that are issued by today's commercial certificate authorities, smoothing the path to adoption. Our cryptographically secure implementation, aimed at the 128-bit security level, reveals that the performance price when switching from non-quantum-safe key exchange is not too high. With our R-LWE cipher suites integrated into the Open SSL library and using the Apache web server on a 2-core desktop computer, we could serve 506 RLWE-ECDSA-AES128-GCM-SHA256 HTTPS connections per second for a 10 KiB payload. Compared to elliptic curve Diffie-Hellman, this means an 8 KiB increased handshake size and a reduction in throughput of only 21%. This demonstrates that provably secure post-quantum key-exchange can already be considered practical.
Resumo:
Different human activities like combustion of fossil fuels, biomass burning, industrial and agricultural activities, emit a large amount of particulates into the atmosphere. As a consequence, the air we inhale contains significant amount of suspended particles, including organic and inorganic solids and liquids, as well as various microorganism, which are solely responsible for a number of pulmonary diseases. Developing a numerical model for transport and deposition of foreign particles in realistic lung geometry is very challenging due to the complex geometrical structure of the human lung. In this study, we have numerically investigated the airborne particle transport and its deposition in human lung surface. In order to obtain the appropriate results of particle transport and deposition in human lung, we have generated realistic lung geometry from the CT scan obtained from a local hospital. For a more accurate approach, we have also created a mucus layer inside the geometry, adjacent to the lung surface and added all apposite mucus layer properties to the wall surface. The Lagrangian particle tracking technique is employed by using ANSYS FLUENT solver to simulate the steady-state inspiratory flow. Various injection techniques have been introduced to release the foreign particles through the inlet of the geometry. In order to investigate the effects of particle size on deposition, numerical calculations are carried out for different sizes of particles ranging from 1 micron to 10 micron. The numerical results show that particle deposition pattern is completely dependent on its initial position and in case of realistic geometry; most of the particles are deposited on the rough wall surface of the lung geometry instead of carinal region.
Resumo:
In this work, we have developed a new efficient hole transport material (HTM) composite based on poly(3- hexylthiophene) (P3HT) and bamboo-structured carbon nanotubes (BCNs) for CH3NH3PbI3 (MAPbI3) based perovskite solar cells. Compared to pristine P3HT, it is found that the crystallinity of P3HT was significantly improved by addition of BCNs, which led to over one order of magnitude higher conductivity for the composite containing 1–2 wt% BCNs in P3HT. In the meantime, the interfacial charge transfer between the MAPbI3 light absorbing layer and the HTM composite layer based on P3HT/BCNs was two-fold faster than pristine P3HT. More importantly, the HTM film with a superior morphological structure consisting of closely compact large grains was achieved with the composite containing 1 wt% BCNs in P3HT. The study by electrochemical impedance spectroscopy has confirmed that the electron recombination in the solar cells was reduced nearly ten-fold with the addition of 1 wt% carbon nanotubes in the HTM composite. Owing to the superior HTM film morphology and the significantly reduced charge recombination, the energy conversion efficiency of the perovskite solar cells increased from 3.6% for pristine P3HT to 8.3% for P3HT/(1 wt% BCNs) with a significantly enhanced open circuit voltage (Voc) and fill factor (FF). The findings of this work are important for development of new HTM for high performance perovskite solar cells.
Resumo:
Aerosol deposition in cylindrical tubes is a subject of interest to researchers and engineers in many applications of aerosol physics and metrology. Investigation of nano-particles in different aspects such as lungs, upper airways, batteries and vehicle exhaust gases is vital due the smaller size, adverse health effect and higher trouble for trapping than the micro-particles. The Lagrangian particle tracking provides an effective method for simulating the deposition of nano-particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. In this paper, the deposition of nano-particles in cylindrical tubes under laminar condition is studied using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different flow rates are examined. The point analysis in a uniform flow is performed for validating the Brownian motion. The results show good agreement between the calculated deposition efficiency and the analytic correlations in the literature. Furthermore, for the nano-particles with the diameter more than 40 nm, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.
Resumo:
Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1.
Resumo:
Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.
Resumo:
The effect of tunnel junction resistances on the electronic property and the magneto-resistance of few-layer graphene sheet networks is investigated. By decreasing the tunnel junction resistances, transition from strong localization to weak localization occurs and magneto-resistance changes from positive to negative. It is shown that the positive magneto-resistance is due to Zeeman splitting of the electronic states at the Fermi level as it changes with the bias voltage. As the tunnel junction resistances decrease, the network resistance is well described by 2D weak localization model. Sensitivity of the magneto-resistance to the bias voltage becomes negligible and diminishes with increasing temperature. It is shown 2D weak localization effect mainly occurs inside of the few-layer graphene sheets and the minimum temperature of 5 K in our experiments is not sufficiently low to allow us to observe 2D weak localization effect of the networks as it occurs in 2D disordered metal films. Furthermore, defects inside the few-layer graphene sheets have negligible effect on the resistance of the networks which have small tunnel junction resistances between few-layer graphene sheets
Resumo:
Impulse propagation in biological tissues is known to be modulated by structural heterogeneity. In cardiac muscle, improved understanding on how this heterogeneity influences electrical spread is key to advancing our interpretation of dispersion of repolarization. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a means of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, analysed against in vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies relevant characteristics of cardiac electrical propagation at tissue level. These include conduction effects on action potential (AP) morphology, the shortening of AP duration along the activation pathway and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media.
Resumo:
By increasing the density of exposed active edges, the perpendicularly oriented structure of MoSe2 nanosheets facilitates ion/electrolyte transport at the electrode interface and minimizes the restacking of nanosheets, while the graphene improves the electrical contact between the catalyst and the electrode. This makes the MoSe2/graphene hybrid perfect as a catalyst in the hydrogen evolution reaction (HER). It shows a greatly improved catalytic activity compared with bare MoSe2 nanosheets.
Resumo:
Stability analyses have been widely used to better understand the mechanism of traffic jam formation. In this paper, we consider the impact of cooperative systems (a.k.a. connected vehicles) on traffic dynamics and, more precisely, on flow stability. Cooperative systems are emerging technologies enabling communication between vehicles and/or with the infrastructure. In a distributed communication framework, equipped vehicles are able to send and receive information to/from other equipped vehicles. Here, the effects of cooperative traffic are modeled through a general bilateral multianticipative car-following law that improves cooperative drivers' perception of their surrounding traffic conditions within a given communication range. Linear stability analyses are performed for a broad class of car-following models. They point out different stability conditions in both multianticipative and nonmultianticipative situations. To better understand what happens in unstable conditions, information on the shock wave structure is studied in the weakly nonlinear regime by the mean of the reductive perturbation method. The shock wave equation is obtained for generic car-following models by deriving the Korteweg de Vries equations. We then derive traffic-state-dependent conditions for the sign of the solitary wave (soliton) amplitude. This analytical result is verified through simulations. Simulation results confirm the validity of the speed estimate. The variation of the soliton amplitude as a function of the communication range is provided. The performed linear and weakly nonlinear analyses help justify the potential benefits of vehicle-integrated communication systems and provide new insights supporting the future implementation of cooperative systems.