952 resultados para ECTOPLACENTAL CONE
Resumo:
An analysis is given of velocity and pressure-dependent sliding flow of a thin layer of damp granular material in a spinning cone. Integral momentum equations for steady state, axisymmetric flow are derived using a boundary layer approximation. These reduce to two coupled first-order differential equations for the radial and circumferential sliding velocities. The influence of viscosity and friction coefficients and inlet boundary conditions is explored by presentation of a range of numerical results. In the absence of any interfacial shear traction the flow would, with increasing radial and circumferential slip, follow a trajectory from inlet according to conservation of angular momentum and kinetic energy. Increasing viscosity or friction reduces circumferential slip and, in general, increases the residence time of a particle in the cone. The residence time is practically insensitive to the inlet velocity. However, if the cone angle is very close to the friction angle then the residence time is extremely sensitive to the relative magnitude of these angles. © 2011 Authors.
Resumo:
The final stages of pinchoff and breakup of dripping droplets of near-inviscid Newtonian fluids are studied experimentally for pure water and ethanol. High-speed imaging and image analysis are used to determine the angle and the minimum neck size of the cone-shaped extrema of the ligaments attached to dripping droplets in the final microseconds before pinchoff. The angle is shown to steadily approach the value of 18.0 ±0.4, independently of the initial flow conditions or the type of breakup. The filament thins and necks following a τ2 /3 law in terms of the time remaining until pinchoff, regardless of the initial conditions. The observed behavior confirms theoretical predictions. © 2012 American Physical Society.
Resumo:
The final stages of pinchoff and breakup of dripping droplets of near-inviscid Newtonian fluids are studied experimentally for pure water and ethanol. High-speed imaging and image analysis are used to determine the angle and the minimum neck size of the cone-shaped extrema of the ligaments attached to dripping droplets in the final microseconds before pinchoff. The angle is shown to steadily approach the value of 18.0 ± 0.4°, independently of the initial flow conditions or the type of breakup. The filament thins and necks following a τ(2/3) law in terms of the time remaining until pinchoff, regardless of the initial conditions. The observed behavior confirms theoretical predictions.
Resumo:
The ballistic performance of clamped circular carbon fibre reinforced polymer (CFRP) and Ultra High Molecular Weight Polyethylene (UHMWPE) fibre composite plates of equal areal mass and 0/90 lay-up were measured and compared with that of monolithic 304 stainless steel plates. The effect of matrix shear strength upon the dynamic response was explored by testing: (i) CFRP plates with both a cured and uncured matrix and (ii) UHMWPE laminates with identical fibres but with two matrices of different shear strength. The response of these plates when subjected to mid-span, normal impact by a steel ball was measured via a dynamic high speed shadow moiré technique. Travelling hinges emanate from the impact location and travel towards the supports. The anisotropic nature of the composite plate results in the hinges travelling fastest along the fibre directions and this results in square-shaped moiré fringes in the 0/90 plates. Projectile penetration of the UHMWPE and the uncured CFRP plates occurs in a progressive manner, such that the number of failed plies increases with increasing velocity. The cured CFRP plate, of high matrix shear strength, fails by cone-crack formation at low velocities, and at higher velocities by a combination of cone-crack formation and communition of plies beneath the projectile. On an equal areal mass basis, the low shear strength UHMWPE plate has the highest ballistic limit followed by the high matrix shear strength UHMWPE plate, the uncured CFRP, the steel plate and finally the cured CFRP plate. We demonstrate that the high shear strength UHMWPE plate exhibits Cunniff-type ballistic limit scaling. However, the observed Cunniff velocity is significantly lower than that estimated from the laminate properties. The data presented here reveals that the Cunniff velocity is limited in its ability to characterise the ballistic performance of fibre composite plates as this velocity is independent of the shear properties of the composites: the ballistic limit of fibre composite plates increases with decreasing matrix shear strength for both CFRP and UHMWPE plates. © 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
We consider the problem of positive observer design for positive systems defined on solid cones in Banach spaces. The design is based on the Hilbert metric and convergence properties are analyzed in the light of the Birkhoff theorem. Two main applications are discussed: positive observers for systems defined in the positive orthant, and positive observers on the cone of positive semi-definite matrices with a view on quantum systems. © 2011 IEEE.
Resumo:
Convergence analysis of consensus algorithms is revisited in the light of the Hilbert distance. The Lyapunov function used in the early analysis by Tsitsiklis is shown to be the Hilbert distance to consensus in log coordinates. Birkhoff theorem, which proves contraction of the Hilbert metric for any positive homogeneous monotone map, provides an early yet general convergence result for consensus algorithms. Because Birkhoff theorem holds in arbitrary cones, we extend consensus algorithms to the cone of positive definite matrices. The proposed generalization finds applications in the convergence analysis of quantum stochastic maps, which are a generalization of stochastic maps to non-commutative probability spaces. ©2010 IEEE.
Resumo:
This paper introduces a new metric and mean on the set of positive semidefinite matrices of fixed-rank. The proposed metric is derived from a well-chosen Riemannian quotient geometry that generalizes the reductive geometry of the positive cone and the associated natural metric. The resulting Riemannian space has strong geometrical properties: it is geodesically complete, and the metric is invariant with respect to all transformations that preserve angles (orthogonal transformations, scalings, and pseudoinversion). A meaningful approximation of the associated Riemannian distance is proposed, that can be efficiently numerically computed via a simple algorithm based on SVD. The induced mean preserves the rank, possesses the most desirable characteristics of a geometric mean, and is easy to compute. © 2009 Society for Industrial and Applied Mathematics.
Resumo:
There is increasing evidence for the involvement of lipid membranes in both the functional and pathological properties of α-synuclein (α-Syn). Despite many investigations to characterize the binding of α-Syn to membranes, there is still a lack of understanding of the binding mode linking the properties of lipid membranes to α-Syn insertion into these dynamic structures. Using a combination of an optical biosensing technique and in situ atomic force microscopy, we show that the binding strength of α-Syn is related to the specificity of the lipid environment (the lipid chemistry and steric properties within a bilayer structure) and to the ability of the membranes to accommodate and remodel upon the interaction of α-Syn with lipid membranes. We show that this interaction results in the insertion of α-Syn into the region of the headgroups, inducing a lateral expansion of lipid molecules that can progress to further bilayer remodeling, such as membrane thinning and expansion of lipids out of the membrane plane. We provide new insights into the affinity of α-Syn for lipid packing defects found in vesicles of high curvature and in planar membranes with cone-shaped lipids and suggest a comprehensive model of the interaction between α-Syn and lipid bilayers. The ability of α-Syn to sense lipid packing defects and to remodel membrane structure supports its proposed role in vesicle trafficking.
Resumo:
Three new species of Tubificinae (Naididae, Oligochaeta), Varichaetadrilus vestibulatus n. sp., Aulodrilus apeniatus n. sp., and Ilyodrilus mesoprostatus n. sp., are reported from Fuxian Lake and Xingyun Lake of Yunnan Province, Southwest China. V. vestibulatus differs from its allies by possessing modified spermathecal chaetae and thinner cylindrical penial sheaths. A. apeniatus is unique in the genus by having no penis. I. mesoprostatus is distinguishable from congeners by its prostate glands joining middle portion of atria and having concave, cone-shaped cuticular penial sheaths. Twenty-eight species of freshwater oligochaetes have hitherto been recorded from Yunnan Province, including five endemic species from three plateau lakes.
Resumo:
To study nuclear transfer in the leach (Paramisgurnus dabryanus Sauvage), blastula and gastrula cells were fused with UV-inactivated oocytes by cell-to-cell electrofusion. To facilitate nuclear transfer, blastula and gastrula cells were cultured or incubated at 4 degreesC in different solutions. TC-199 medium supplemented with 20% calf serum was the best culture solution, and effectively retained the totipotence of blastula or gastrula cells for up to 10 days, It was found that gastrula cells incubated at 4 degreesC had the same totipotence as blastula cells, The optimal UV dosage for inactivation of the oocyte chromatin was 180-240 mJ cm(-2). Electrofusion was carried out in a cone-shaped fusion chamber, which permitted the recipient oocyte and the donor blastula cell to contact one another. The electrofusion procedure resulted in a 10% success rate of normal-appearing fish. Genetic analysis indicated that the nuclear material originated from the donor cell (blastomere) and the oocyte pronucleus did not take part in development.
Resumo:
We study quantum oscillations of the magnetization in Bi2Se3 (111) surface system in the presence of a perpendicular magnetic field. The combined spin-chiral Dirac cone and Landau quantization produce profound effects on the magnetization properties that are fundamentally different from those in the conventional semiconductor two-dimensional electron gas. In particular, we show that the oscillating center in the magnetization chooses to pick up positive or negative values depending on whether the zero-mode Landau level is occupied or empty. An intuitive analysis of these features is given and the subsequent effects on the magnetic susceptibility and Hall conductance are also discussed.
Resumo:
We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction (RSOI). The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional (Q1D) p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong RSOI.
Resumo:
We investigated properties of intraband absorption in In-x Ga1-xAs quantum dots (QDs) superlattice. Energy levels in conduction band in QDs were calculated for a cone-shaped quantum dot associated with coupling between QDs in the framework of the effective-mass envelope-function theory. Theoretical results demonstrated that energy levels in conduction band were greatly affected by the vertical coupling between quantum dots, which can be used to modify transition wavelength by adjusting the space layer thickness. Intraband transition is really sensitive to normal incidence and the absorption peak intensity is dependent on the polarization. A satisfying agreement is found between theoretical and experimental values. This result opens up prospects for the fabrication of QDs infrared detectors, which work at atmospheric windows.
Resumo:
A systematic investigation of crystallographic and magnetic properties of nitride R3Fe29-xCrxN4 (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. The lattice constants and unit cell volume decrease with increasing rare earth atomic number from Nd to Dy, reflecting the lanthanide contraction. After nitrogenation the relative volume expansion of each nitride is around between 5% and 7%. The nitrogenation results in a good improvement in the Curie temperature, the saturation magnetization and anisotropy fields at 4.2 K, and room temperature for R3Fe29-xCrxN4. Magnetohistory effects of R3Fe29-xCrxN4 and R3Fe29-xCrx (R=Nd and Sm) are observed in a low field of 0.04 T. First order magnetization process occurs in Sm3Fe24.0Cr5.0N4 in magnetic fields of 2.8 T at 4.2 K. After nitrogenation, the easy magnetization direction of Sm3Fe24.0Cr5.0 is changed from the easy-cone structure to the uniaxial. The good intrinsic magnetic properties of Sm3Fe24.0Cr5.0N4 make this compound a hopeful candidate for new high-performance hard magnets. (C) 1998 American Institute of Physics.
Resumo:
A systematic investigation of crystallographic and magnetic properties of nitride R3Fe29-xVxN4 (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. Nitrogenation leads to a relative volume expansion of about 6%. The lattice constants and unit cell volume decrease with increasing rare-earth atomic number from Nd to Dy, reflecting the lanthanide contraction. On average, the Curie temperature increases due to the nitrogenation to about 200 K compared with its parent compound. Generally speaking, nitrogenation also results in a remarkable improvement of the saturation magnetization and anisotropy fields at 4.2 K and room temperature for R3Fe29-xVxN4 compared with their parent compounds. The transition temperature indicates the spin reorientations of R3Fe29-xVxN4 for R = Nd and Sm are at around 375 and 370 K which are higher than that of R3Fe29-xVx, for R = Nd and Sm 145 and 140 K, respectively. The magnetohistory effects of R3Fe29-xVxN4 (R = Ce, Nd, and Sm) are observed in low fields of 0.04 T. After nitrogenation the easy magnetization direction of Sm3Fe26.7V2.3 is changed from an easy-cone structure to the b-axis. As a preliminary result, a maximum remanence B-r of 0.94 T, an intrinsic coercivity mu(0)H(C) of 0.75 T, and a maximum energy product (B H)(max) of 108.5 kJ m(-3) for the nitride magnet Sm3Fe26.7V2.3N4 are achieved by ball-milling at 293 K.