908 resultados para Dual Modality
Resumo:
Proton radiation therapy is gaining popularity because of the unique characteristics of its dose distribution, e.g., high dose-gradient at the distal end of the percentage-depth-dose curve (known as the Bragg peak). The high dose-gradient offers the possibility of delivering high dose to the target while still sparing critical organs distal to the target. However, the high dose-gradient is a double-edged sword: a small shift of the highly conformal high-dose area can cause the target to be substantially under-dosed or the critical organs to be substantially over-dosed. Because of that, large margins are required in treatment planning to ensure adequate dose coverage of the target, which prevents us from realizing the full potential of proton beams. Therefore, it is critical to reduce uncertainties in the proton radiation therapy. One major uncertainty in a proton treatment is the range uncertainty related to the estimation of proton stopping power ratio (SPR) distribution inside a patient. The SPR distribution inside a patient is required to account for tissue heterogeneities when calculating dose distribution inside the patient. In current clinical practice, the SPR distribution inside a patient is estimated from the patient’s treatment planning computed tomography (CT) images based on the CT number-to-SPR calibration curve. The SPR derived from a single CT number carries large uncertainties in the presence of human tissue composition variations, which is the major drawback of the current SPR estimation method. We propose to solve this problem by using dual energy CT (DECT) and hypothesize that the range uncertainty can be reduced by a factor of two from currently used value of 3.5%. A MATLAB program was developed to calculate the electron density ratio (EDR) and effective atomic number (EAN) from two CT measurements of the same object. An empirical relationship was discovered between mean excitation energies and EANs existing in human body tissues. With the MATLAB program and the empirical relationship, a DECT-based method was successfully developed to derive SPRs for human body tissues (the DECT method). The DECT method is more robust against the uncertainties in human tissues compositions than the current single-CT-based method, because the DECT method incorporated both density and elemental composition information in the SPR estimation. Furthermore, we studied practical limitations of the DECT method. We found that the accuracy of the DECT method using conventional kV-kV x-ray pair is susceptible to CT number variations, which compromises the theoretical advantage of the DECT method. Our solution to this problem is to use a different x-ray pair for the DECT. The accuracy of the DECT method using different combinations of x-ray energies, i.e., the kV-kV, kV-MV and MV-MV pair, was compared using the measured imaging uncertainties for each case. The kV-MV DECT was found to be the most robust against CT number variations. In addition, we studied how uncertainties propagate through the DECT calculation, and found general principles of selecting x-ray pairs for the DECT method to minimize its sensitivity to CT number variations. The uncertainties in SPRs estimated using the kV-MV DECT were analyzed further and compared to those using the stoichiometric method. The uncertainties in SPR estimation can be divided into five categories according to their origins: the inherent uncertainty, the DECT modeling uncertainty, the CT imaging uncertainty, the uncertainty in the mean excitation energy, and SPR variation with proton energy. Additionally, human body tissues were divided into three tissue groups – low density (lung) tissues, soft tissues and bone tissues. The uncertainties were estimated separately because their uncertainties were different under each condition. An estimate of the composite range uncertainty (2s) was determined for three tumor sites – prostate, lung, and head-and-neck, by combining the uncertainty estimates of all three tissue groups, weighted by their proportions along typical beam path for each treatment site. In conclusion, the DECT method holds theoretical advantages in estimating SPRs for human tissues over the current single-CT-based method. Using existing imaging techniques, the kV-MV DECT approach was capable of reducing the range uncertainty from the currently used value of 3.5% to 1.9%-2.3%, but it is short to reach our original goal of reducing the range uncertainty by a factor of two. The dominant source of uncertainties in the kV-MV DECT was the uncertainties in CT imaging, especially in MV CT imaging. Further reduction in beam hardening effect, the impact of scatter, out-of-field object etc. would reduce the Hounsfeld Unit variations in CT imaging. The kV-MV DECT still has the potential to reduce the range uncertainty further.
Resumo:
Apoptosis, a form of programmed cell death, is critical to homoeostasis, normal development, and physiology. Dysregulation of apoptosis can lead to the accumulation of unwanted cells, such as occurs in cancer, and the removal of needed cells or disorders of normal tissues, such as heart, neurodegenerative, and autoimmune diseases. Noninvasive detection of apoptosis may play an important role in the evaluation of disease states and response to therapeutic intervention for a variety of diseases. It is desirable to have an imaging method to accurately detect and monitor this process in patients. In this study, we developed annexin A5-conjugated polymeric micellar nanoparticles dual-labeled with a near-infrared fluorescence fluorophores (Cy7) and a radioisotope (111In), named as 111In-labeled annexin A5-CCPM. In vitro studies demonstrated that annexin A5-CCPM could strongly and specifically bind to apoptotic cells. In vivo studies showed that apoptotic tissues could be clearly visualized by both single photon emission computed tomography (SPECT) and fluorescence molecular tomography (FMT) after intravenous injection of 111In-labeled Annexin A5-CCPM in 6 different apoptosis models. In contrast, there was little signal in respective healthy tissues. All the biodistribution data confirmed imaging results. Moreover, histological analysis revealed that radioactivity count correlated with fluorescence signal from the nanoparticles, and both signals co-localized with the region of apoptosis. In sum, 111In-labeled annexin A5-CCPM allowed visualization of apoptosis by both nuclear and optical imaging techniques. The complementary information acquired with multiple imaging techniques should be advantageous in improving diagnostics and management of patients.
Resumo:
Antiangiogenesis is a promising anti-tumor strategy through inhibition tumor vascularformation to suppress tumor growth. Targeting specific VEGF/R has been showntherapeutic benefits in many cancer types and become a first approvedantiangiogenic modalities by Food and Drug Administration (FDA) in United States.However, interruption of homeostasis in normal tissues that is likely due to theinhibition of VEGF/R signaling pathway induces unfavorable side effects. Moreover,cytostatic nature of antiangiogenic drugs frequently causes less tumor cell specifickilling activity, and cancer cells escaped from cell death induced by these drugseven gain more malignant phenotypes, resulting in tumor invasion and metastasis.To overcome these issues, we developed a novel anti-tumor therapeutic EndoCDfusion protein which linked endostatin (Endo) to cytosine deaminase-uracilvphosphoribosyl transferase (CD). Endo targets unique tumor endothelial cells toprovide tumor-specific antiangiogenesis activity and also carries CD to the localtumor area, where it serves nontoxic prodrug 5-fluorocytosine (5-FC) enzymaticconversion reaction to anti-metabolite chemotherapy drug 5-fluorouracil (5-FU). Wedemonstrated that 5-FU concentration was highly increased in tumor sites, resultingin high level of endothelial cells and tumor cells cytotoxic efficacy. Furthermore,EndoCD/5-FC therapy decreased tumor growth and colorectal liver metastasisincident compared with bevacizumab/5-FU treatment in human breast and colorectalliver metastasis orthotropic animal models. In cardiotoxicity safety profile,EndoCD/5-FC is a contrast to bevacizumab/5-FU; lower risk of cardiotoxicityinduction or heart function failure was found in EndoCD/5-FC treatment thanbevacizumab/5-FU does in mice. EndoCD/5-FC showed more potent therapeuticefficacy with high safety profile and provided stronger tumor invasion or metastasisinhibition than antiangiogenic drugs. Together, EndoCD fusion protein with 5-FCshowed dual tumor targeting activities including antiangiogenesis and tumor localchemotherapy, and it could serve as an alternative option for antiangiogenic therapy.
Resumo:
The 3' cleavage generating non-polyadenylated animal histone mRNAs depends on the base pairing between U7 snRNA and a conserved histone pre-mRNA downstream element. This interaction is enhanced by a 100 kDa zinc finger protein (ZFP100) that forms a bridge between an RNA hairpin element upstream of the processing site and the U7 small nuclear ribonucleoprotein (snRNP). The N-terminus of Lsm11, a U7-specific Sm-like protein, was shown to be crucial for histone RNA processing and to bind ZFP100. By further analysing these two functions of Lsm11, we find that Lsm11 and ZFP100 can undergo two interactions, i.e. between the Lsm11 N-terminus and the zinc finger repeats of ZFP100, and between the N-terminus of ZFP100 and the Sm domain of Lsm11, respectively. Both interactions are not specific for the two proteins in vitro, but the second interaction is sufficient for a specific recognition of the U7 snRNP by ZFP100 in cell extracts. Furthermore, clustered point mutations in three phylogenetically conserved regions of the Lsm11 N-terminus impair or abolish histone RNA processing. As these mutations have no effect on the two interactions with ZFP100, these protein regions must play other roles in histone RNA processing, e.g. by contacting the pre-mRNA or additional processing factors.
Resumo:
A philosopher who thinks substantive necessities obtain in re, this paper argues, need not believe in non-actual worlds, or maximal consistent sets of propositions, but merely in properties. For most properties, on even the sparsest property realism, are flanked by contraries with which they cannot be co-instantiated. True, Armstrong has shown that the impossibility that a property bearer should bear each of two contraries is sometimes just the impossibility that the bearer should be identical with its own proper part-hence is no substantive impossibility. But for many genuine contraries Armstrong's analysis fails; their incompatibility cannot be reduced to facts of identity. The main examples are dispositional properties, so the paper also argues that being dispositional is no bar to a property's being real in its own right.
Resumo:
The relationship between time in dreams and real time has intrigued scientists for centuries. The question if actions in dreams take the same time as in wakefulness can be tested by using lucid dreams where the dreamer is able to mark time intervals with prearranged eye movements that can be objectively identified in EOG recordings. Previous research showed an equivalence of time for counting in lucid dreams and in wakefulness (LaBerge, 1985; Erlacher and Schredl, 2004), but Erlacher and Schredl (2004) found that performing squats required about 40% more time in lucid dreams than in the waking state. To find out if the task modality, the task length, or the task complexity results in prolonged times in lucid dreams, an experiment with three different conditions was conducted. In the first condition, five proficient lucid dreamers spent one to three non-consecutive nights in the sleep laboratory. Participants counted to 10, 20, and 30 in wakefulness and in their lucid dreams. Lucidity and task intervals were time stamped with left-right-left-right eye movements. The same procedure was used for these condition where eight lucid dreamers had to walk 10, 20, or 30 steps. In the third condition, eight lucid dreamers performed a gymnastics routine, which in the waking state lasted the same time as walking 10 steps. Again, we found that performing a motor task in a lucid dream requires more time than in wakefulness. Longer durations in the dream state were present for all three tasks, but significant differences were found only for the tasks with motor activity (walking and gymnastics). However, no difference was found for relative times (no disproportional time effects) and a more complex motor task did not result in more prolonged times. Longer durations in lucid dreams might be related to the lack of muscular feedback or slower neural processing during REM sleep. Future studies should explore factors that might be associated with prolonged durations.
Resumo:
OBJECTIVE To assess long-term clinical outcomes of consecutive high-risk patients with severe aortic stenosis according to treatment allocation to transcatheter aortic valve implantation (TAVI), surgical aortic valve replacement (SAVR) or medical treatment (MT). METHODS Patients with severe aortic stenosis were consecutively enrolled into a prospective single centre registry. RESULTS Among 442 patients (median age 83 years, median STS-score 4.7) allocated to MT (n=78), SAVR (n=107), or TAVI (n=257) all-cause mortality amounted to 81%, 37% and 43% after a median duration of follow-up of 3.9 years (p<0.001). Rates of major adverse cerebro-cardiovascular events were lower in patients undergoing SAVR or TAVI as compared with MT (SAVR vs MT: HR 0.31, 95% CI 0.21 to 0.46) (TAVI vs MT: HR 0.34, 95% CI 0.25 to 0.46), with no significant difference between SAVR and TAVI (HR 0.88, 95% CI 0.62 to 1.25). Whereas SAVR (HR 0.39, 95% CI 0.24 to 0.61), TAVI (HR 0.37, 95% CI 0.26 to 0.52), and female gender (HR 0.72, 95% CI 0.53 to 0.99) were associated with improved survival, body mass index ≤20 kg/m(2) (HR 1.60, 95% CI 1.04 to 2.47), diabetes (HR 1.48, 95% CI 1.03 to 2.12), peripheral vascular disease (HR 2.01, 95% CI 1.44 to 2.81), atrial fibrillation (HR 1.74, 95% CI 1.28 to 2.37) and pulmonary hypertension (HR 1.43, 95% CI 1.03 to 2.00) were identified as independent predictors of mortality. CONCLUSIONS Among high-risk patients with severe aortic stenosis, long-term clinical outcome through 5 years was comparable between patients allocated to SAVR or TAVI. In contrast, patients with MT had a dismal prognosis.
Resumo:
OBJECTIVE The objective of this study was to assess the discriminative power of dual-energy computed tomography (DECT) versus single-energy CT (SECT) to distinguish between ferromagnetic and non-ferromagnetic ballistic projectiles to improve safety regarding magnetic resonance (MR) imaging studies in patients with retained projectiles. MATERIALS AND METHODS Twenty-seven ballistic projectiles including 25 bullets (diameter, 3-15 mm) and 2 shotgun pellets (2 mm each) were examined in an anthropomorphic chest phantom using 128-section dual-source CT. Data acquisition was performed with tube voltages set at 80, 100, 120, and 140 kV(p). Two readers independently assessed CT numbers of the projectile's core on images reconstructed with an extended CT scale. Dual-energy indices (DEIs) were calculated from both 80-/140-kV(p) and 100-/140-kV(p) pairs; receiver operating characteristics curves were fitted to assess ferromagnetic properties by means of CT numbers and DEI. RESULTS Nine (33%) of the projectiles were ferromagnetic; 18 were nonferromagnetic (67%). Interreader and intrareader correlations of CT number measurements were excellent (intraclass correlation coefficients, >0.906; P<0.001). The DEI calculated from both 80/140 and 100/140 kV(p) were significantly (P<0.05) different between the ferromagnetic and non-ferromagnetic projectiles. The area under the curve (AUC) was 0.75 and 0.8 for the tube voltage pairs of 80/140 and 100/140 kV(p) (P<0.05; 95% confidence interval, 0.57-0.94 and 0.62-0.97, respectively) to differentiate between the ferromagnetic and non-ferromagnetic ballistic projectiles; which increased to 0.83 and 0.85 when shotgun pellets were excluded from the analysis. The AUC for SECT was 0.69 and 0.73 (80 and 100 kV[p], respectively). CONCLUSIONS Measurements of DECT combined with an extended CT scale allow for the discrimination of projectiles with non-ferromagnetic from those with ferromagnetic properties in an anthropomorphic chest phantom with a higher AUC compared with SECT. This study indicates that DECT may have the potential to contribute to MR safety and allow for MR imaging of patients with retained projectiles. However, further studies are necessary before this concept may be used to triage clinical patients before MR.