815 resultados para Dominion Power and Transmission Company
Resumo:
We consider a multipair decode-and-forward relay channel, where multiple sources transmit simultaneously their signals to multiple destinations with the help of a full-duplex relay station. We assume that the relay station is equipped with massive arrays, while all sources and destinations have a single antenna. The relay station uses channel estimates obtained from received pilots and zero-forcing (ZF) or maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To reduce significantly the loop interference effect, we propose two techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the relay station. We derive an exact achievable rate in closed-form for MRC/MRT processing and an analytical approximation of the achievable rate for ZF processing. This approximation is very tight, especially for large number of relay station antennas. These closed-form expressions enable us to determine the regions where the full-duplex mode outperforms the half-duplex mode, as well as, to design an optimal power allocation scheme. This optimal power allocation scheme aims to maximize the energy efficiency for a given sum spectral efficiency and under peak power constraints at the relay station and sources. Numerical results verify the effectiveness of the optimal power allocation scheme. Furthermore, we show that, by doubling the number of transmit/receive antennas at the relay station, the transmit power of each source and of the relay station can be reduced by 1.5dB if the pilot power is equal to the signal power, and by 3dB if the pilot power is kept fixed, while maintaining a given quality-of-service.
Resumo:
This paper presents a multi-agent system approach to address the difficulties encountered in traditional SCADA systems deployed in critical environments such as electrical power generation, transmission and distribution. The approach models uncertainty and combines multiple sources of uncertain information to deliver robust plan selection. We examine the approach in the context of a simplified power supply/demand scenario using a residential grid connected solar system and consider the challenges of modelling and reasoning with
uncertain sensor information in this environment. We discuss examples of plans and actions required for sensing, establish and discuss the effect of uncertainty on such systems and investigate different uncertainty theories and how they can fuse uncertain information from multiple sources for effective decision making in
such a complex system.
Resumo:
While the existence of an ‘emotional turn’ within the social sciences is now widely acknowledged, some areas have garnered less specific attention than others. Perhaps the most significant absence within this literature is an explicit exploration of the relationship between emotions and relations of power and domination. This article will attempt such an endeavour. In doing so, I will draw on some key work from within the sociology of emotions, such as Barbalet, Collins, Kemper and Turner, and from the power literature within social theory more generally, including Dahl, Elias, Foucault, Giddens, Gramsci and Lukes. The main thrust of the argument is that power and emotion are conceptual twins in need of a serious theoretical reunion, and that emotions have played a largely unacknowledged, ‘under-labouring’ role within most theories of power. The need for a more unified approach to these two concepts is highlighted.
Resumo:
Gas fired generation currently plays an integral support role ensuring security of supply in power systems with high wind power penetrations due to its technical and economic attributes. However, the increase in variable wind power has affected the gas generation output profile and is pushing the boundaries of the design and operating envelope of gas infrastructure. This paper investigates the mutual dependence and interaction between electricity generation and gas systems through the first comprehensive joined-up, multi-vector energy system analysis for Ireland. Key findings reveal the high vulnerability of the Irish power system to outages on the Irish gas system. It has been shown that the economic operation of the power system can be severely impacted by gas infrastructure outages, resulting in an average system marginal price of up to €167/MWh from €67/MWh in the base case. It has also been shown that gas infrastructure outages pose problems for the location of power system reserve provision, with a 150% increase in provision across a power system transmission bottleneck. Wind forecast error was shown to be a significant cause for concern, resulting in large swings in gas demand requiring key gas infrastructure to operate at close to 100% capacity. These findings are thought to increase in prominence as the installation of wind capacity increases towards 2020, placing further stress on both power and gas systems to maintain security of supply.
Resumo:
This paper proposes a continuous time Markov chain (CTMC) based sequential analytical approach for composite generation and transmission systems reliability assessment. The basic idea is to construct a CTMC model for the composite system. Based on this model, sequential analyses are performed. Various kinds of reliability indices can be obtained, including expectation, variance, frequency, duration and probability distribution. In order to reduce the dimension of the state space, traditional CTMC modeling approach is modified by merging all high order contingencies into a single state, which can be calculated by Monte Carlo simulation (MCS). Then a state mergence technique is developed to integrate all normal states to further reduce the dimension of the CTMC model. Moreover, a time discretization method is presented for the CTMC model calculation. Case studies are performed on the RBTS and a modified IEEE 300-bus test system. The results indicate that sequential reliability assessment can be performed by the proposed approach. Comparing with the traditional sequential Monte Carlo simulation method, the proposed method is more efficient, especially in small scale or very reliable power systems.
Resumo:
High Voltage Direct Current (HVDC) electric power transmission is a promising technology for integrating offshore wind farms and interconnecting power grids in different regions. In order to maintain the DC voltage, droop control has been widely used. Transmission line loss constitutes an import part of the total power loss in a multi-terminal HVDC scheme. In this paper, the relation between droop controller design and transmission loss has been investigated. Different MTDC layout configurations are compared to examine the effect of droop controller design on the transmission loss.
Resumo:
Archbishop James Ussher's manuscript notebooks allow us to observe the making of a Calvinist absolutist and to orientate the archbishop's beliefs about royal power within European Reformed thought as a whole. By 1643, Ussher was preaching a polished and complete theory of absolute royal power, and it is possible to track the development of this political theory forward from his undergraduate days in the 1590s. Throughout his life Ussher engaged anxiously with Reformed theologians abroad, who generally favored limited rather than absolute monarchy. Nevertheless, Ussher shared with these Reformed colleagues both an antipathy to aspects of Aristotelian politics and a commitment to the divine institution of royal power. Finally, despite Ussher's hostility to Laudian innovations in the Irish Church, his heartfelt political beliefs made him a firm supporter of Stuart absolutism throughout the Three Kingdoms.
Secure D2D Communication in Large-Scale Cognitive Cellular Networks: A Wireless Power Transfer Model
Resumo:
In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multiantenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the primary base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, three wireless power transfer (WPT) policies are proposed: 1) co-operative power beacons (CPB) power transfer, 2) best power beacon (BPB) power transfer, and 3) nearest power beacon (NPB) power transfer. To characterize the power transfer reliability of the proposed three policies, we derive new expressions for the exact power outage probability. Moreover, the analysis of the power outage probability is extended to the case when PBs are equipped with large antenna arrays. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), where the receiver with the strongest channel is selected; and 2) nearest receiver selection (NRS), where the nearest receiver is selected. To assess the secrecy performance, we derive new analytical expressions for the secrecy outage probability and the secrecy throughput considering the two receiver selection schemes using the proposed WPT policies. We presented Monte carlo simulation results to corroborate our analysis and show: 1) secrecy performance improves with increasing densities of PBs and D2D receivers due to larger multiuser diversity gain; 2) CPB achieves better secrecy performance than BPB and NPB but consumes more power; and 3) BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead. A pivotal conclusion- is reached that with increasing number of antennas at PBs, NPB offers a comparable secrecy performance to that of BPB but with a lower complexity.
Resumo:
Thesis (Ph.D.)--University of Washington, 2013
Resumo:
This paper provides an overview of the sources and effects of the RF impairments limiting and rendering the performance of the future wireless communication transceivers costly as well as hindering their wide-spread use in commercial products. As transmission bandwidths and carrier frequencies increase effect of these impairments worsen. This paper studies and presents analytical evaluations of the performance degradation due to the RF impairments in terms of bit-error-rate and image rejection ratio. The paper also give highlights of the various aspects of the research carried out in mitigating the effects of these impairments primarily in the digital signal processing domain at the baseband as well as providing low-complexity hardware implementations of such algorithms incorporating a number of power and area saving techniques.
Resumo:
Congestion management of transmission power systems has achieve high relevance in competitive environments, which require an adequate approach both in technical and economic terms. This paper proposes a new methodology for congestion management and transmission tariff determination in deregulated electricity markets. The congestion management methodology is based on a reformulated optimal power flow, whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the transactions resulting from market operation. The proposed transmission tariffs consider the physical impact caused by each market agents in the transmission network. The final tariff considers existing system costs and also costs due to the initial congestion situation and losses. This paper includes a case study for the 118 bus IEEE test case.
Resumo:
This thesis provides an alternative framework to analyze power and ethics practiced in everyday conversations, which constitute processes of organizing. Drawing upon narrative frameworks, the analyses of messages posted on an online message board demonstrate people’s imaginative capacity to create relevant stories, in respect of their precise grasp of factual understandings, contextual relevance and evaluative/moral appropriateness, by appropriating others’ words. Based on the empirical analyses, the thesis indicates that studies on power and ethics in organizations can be re-oriented towards appreciating irremediable power imbalances by offering alternative ways of member’s denoting experiences of power.
Resumo:
This thesis explores the relationship between exercises of disciplinary power and acts of resistance as they relate to the negotiation of identities at Spanish Residential School between the years of 1878 and 1930. The school itself, originally Wikwemikong Industrial School, was administered by the Jesuits and the Daughters of the Heart of Mary and relocated to Spanish, Ontario in 1913. Various archival and printed sources have been used to reveal methods of disciplinary power that administrators used to reshape the Aboriginal students. However, despite their incessant efforts, the administrators of Spanish Residential School did not succeed in completely reforming their pupils. The documentary record, then, also suggests that students at Spanish Residential School, although confined in a very oppressive institution, creatively used opportunities to alter their circumstances.
Resumo:
On February 29, 1912 The Ontario Paper Company Limited was incorporated under the leadership of Col. Robert R. McCormick. Four months later construction began in Thorold, Ontario as this location was best for the abundance of power and water and water transportation. The first machine was started at the mill on September 5, 1913. The mill was one of the most advanced of its era, using electricity instead of water power. The mill was also the first of its kind as it combined pulp and paper making instead of separating the two operations.
Resumo:
Oxide free stable metallic nanofluids have the potential for various applications such as in thermal management and inkjet printing apart from being a candidate system for fundamental studies. A stable suspension of nickel nanoparticles of ∼5 nm size has been realized by a modified two-step synthesis route. Structural characterization by x-ray diffraction and transmission electron microscopy shows that the nanoparticles are metallic and are phase pure. The nanoparticles exhibited superparamagnetic properties. The magneto-optical transmission properties of the nickel nanofluid (Ni-F) were investigated by linear optical dichroism measurements. The magnetic field dependent light transmission studies exhibited a polarization dependent optical absorption, known as optical dichroism, indicating that the nanoparticles suspended in the fluid are non-interacting and superparamagnetic in nature. The nonlinear optical limiting properties of Ni-F under high input optical fluence were then analyzed by an open aperture z-scan technique. The Ni-F exhibits a saturable absorption at moderate laser intensities while effective two-photon absorption is evident at higher intensities. The Ni-F appears to be a unique material for various optical devices such as field modulated gratings and optical switches which can be controlled by an external magnetic field