875 resultados para Distribution network reconfiguration problem


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multimedia mining primarily involves, information analysis and retrieval based on implicit knowledge. The ever increasing digital image databases on the Internet has created a need for using multimedia mining on these databases for effective and efficient retrieval of images. Contents of an image can be expressed in different features such as Shape, Texture and Intensity-distribution(STI). Content Based Image Retrieval(CBIR) is an efficient retrieval of relevant images from large databases based on features extracted from the image. Most of the existing systems either concentrate on a single representation of all features or linear combination of these features. The paper proposes a CBIR System named STIRF (Shape, Texture, Intensity-distribution with Relevance Feedback) that uses a neural network for nonlinear combination of the heterogenous STI features. Further the system is self-adaptable to different applications and users based upon relevance feedback. Prior to retrieval of relevant images, each feature is first clustered independent of the other in its own space and this helps in matching of similar images. Testing the system on a database of images with varied contents and intensive backgrounds showed good results with most relevant images being retrieved for a image query. The system showed better and more robust performance compared to existing CBIR systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the key issues in the deployment of sparse sensor networks. The network monitors several environment parameters and is deployed in a semi-arid region for the benefit of small and marginal farmers. We begin by discussing the problems of an existing unreliable 1 sq km sparse network deployed in a village. The proposed solutions are implemented in a new cluster. The new cluster is a reliable 5 sq km network. Our contributions are two fold. Firstly, we describe a. novel methodology to deploy a sparse reliable data gathering sensor network and evaluate the ``safe distance'' or ``reliable'' distance between nodes using propagation models. Secondly, we address the problem of transporting data from rural aggregation servers to urban data centres. This paper tracks our steps in deploying a sensor network in a village,in India, trying to provide better diagnosis for better crop management. Keywords - Rural, Agriculture, CTRS, Sparse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are a number of large networks which occur in many problems dealing with the flow of power, communication signals, water, gas, transportable goods, etc. Both design and planning of these networks involve optimization problems. The first part of this paper introduces the common characteristics of a nonlinear network (the network may be linear, the objective function may be non linear, or both may be nonlinear). The second part develops a mathematical model trying to put together some important constraints based on the abstraction for a general network. The third part deals with solution procedures; it converts the network to a matrix based system of equations, gives the characteristics of the matrix and suggests two solution procedures, one of them being a new one. The fourth part handles spatially distributed networks and evolves a number of decomposition techniques so that we can solve the problem with the help of a distributed computer system. Algorithms for parallel processors and spatially distributed systems have been described.There are a number of common features that pertain to networks. A network consists of a set of nodes and arcs. In addition at every node, there is a possibility of an input (like power, water, message, goods etc) or an output or none. Normally, the network equations describe the flows amoungst nodes through the arcs. These network equations couple variables associated with nodes. Invariably, variables pertaining to arcs are constants; the result required will be flows through the arcs. To solve the normal base problem, we are given input flows at nodes, output flows at nodes and certain physical constraints on other variables at nodes and we should find out the flows through the network (variables at nodes will be referred to as across variables).The optimization problem involves in selecting inputs at nodes so as to optimise an objective function; the objective may be a cost function based on the inputs to be minimised or a loss function or an efficiency function. The above mathematical model can be solved using Lagrange Multiplier technique since the equalities are strong compared to inequalities. The Lagrange multiplier technique divides the solution procedure into two stages per iteration. Stage one calculates the problem variables % and stage two the multipliers lambda. It is shown that the Jacobian matrix used in stage one (for solving a nonlinear system of necessary conditions) occurs in the stage two also.A second solution procedure has also been imbedded into the first one. This is called total residue approach. It changes the equality constraints so that we can get faster convergence of the iterations.Both solution procedures are found to coverge in 3 to 7 iterations for a sample network.The availability of distributed computer systems — both LAN and WAN — suggest the need for algorithms to solve the optimization problems. Two types of algorithms have been proposed — one based on the physics of the network and the other on the property of the Jacobian matrix. Three algorithms have been deviced, one of them for the local area case. These algorithms are called as regional distributed algorithm, hierarchical regional distributed algorithm (both using the physics properties of the network), and locally distributed algorithm (a multiprocessor based approach with a local area network configuration). The approach used was to define an algorithm that is faster and uses minimum communications. These algorithms are found to converge at the same rate as the non distributed (unitary) case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a novel algorithm for placement of standard cells in VLSI circuits based on an analogy of this problem with neural networks. By employing some of the organising principles of these nets, we have attempted to improve the behaviour of the bipartitioning method as proposed by Kernighan and Lin. Our algorithm yields better quality placements compared with the above method, and also makes the final placement independent of the initial partition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The probability distribution of the eigenvalues of a second-order stochastic boundary value problem is considered. The solution is characterized in terms of the zeros of an associated initial value problem. It is further shown that the probability distribution is related to the solution of a first-order nonlinear stochastic differential equation. Solutions of this equation based on the theory of Markov processes and also on the closure approximation are presented. A string with stochastic mass distribution is considered as an example for numerical work. The theoretical probability distribution functions are compared with digital simulation results. The comparison is found to be reasonably good.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generalised formulation of the mathematical model developed for the analysis of transients in a canal network, under subcritical flow, with any realistic combination of control structures and their multiple operations, has been presented. The model accounts for a large variety of control structures such as weirs, gates, notches etc. discharging under different conditions, namely submerged and unsubmerged. A numerical scheme to compute and approximate steady state flow condition as the initial condition has also been presented. The model can handle complex situations that may arise from multiple gate operations. This has been demonstrated with a problem wherein the boundary conditions change from a gate discharge equation to an energy equation and back to a gate discharge equation. In such a situation the wave strikes a fixed gate and leads to large and rapid fluctuations in both discharge and depth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to answer the practically important question of whether the down conductors of lightning protection systems to tall towers and buildings can be electrically isolated from the structure itself, this work is conducted. As a first step in this regard, it is presumed that the down conductor placed on metallic tower will be a pessimistic representation of the actual problem. This opinion was based on the fact that the proximity of heavy metallic structure will have a large damping effect. The post-stroke current distributions along the down conductors and towers, which can be quite different from that in the lightning channel, govern the post-stroke near field and the resulting gradient in the soil. Also, for a reliable estimation of the actual stroke current from the measured down conductor currents, it is essential to know the current distribution characteristics along the down conductors. In view of these, the present work attempts to deduce the post-stroke current and voltage distribution along typical down conductors and towers. A solution of the governing field equations on an electromagnetic model of the system is sought for the investigation. Simulation results providing the spatio-temporal distribution of the post-stroke current and voltage has provided very interesting results. It is concluded that it is almost impossible to achieve electrical isolation between the structure and the down conductor. Furthermore, there will be significant induction into the steel matrix of the supporting structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter Lambda to distinguish between vortical and extensional regions. We then use a direct numerical simulation of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with an exponent theta = 2.9 +/- 0.2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of tracking an intruder in a plane region by using a wireless sensor network comprising motes equipped with passive infrared (PIR) sensors deployed over the region. An input-output model for the PIR sensor and a method to estimate the angular speed of the target from the sensor output are proposed. With the measurement model so obtained, we study the centralized and decentralized tracking performance using the extended Kalman filter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Likely spatial distributions of network-modifying (and mobile) cations in (oxide) glasses are discussed here. At very low modifier concentrations, the ions form dipoles with non-bridging oxygen centres while, at higher levels of modification, the cations tend to order as a result of Coulombic interactions. Activation energies for cation migration are calculated, assuming that the ions occupy (face-sharing) octahedral sites. It is found that conductivity activation energy decreases markedly with increasing modifier content, in agreement with experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The weighted-least-squares method using sensitivity-analysis technique is proposed for the estimation of parameters in water-distribution systems. The parameters considered are the Hazen-Williams coefficients for the pipes. The objective function used is the sum of the weighted squares of the differences between the computed and the observed values of the variables. The weighted-least-squares method can elegantly handle multiple loading conditions with mixed types of measurements such as heads and consumptions, different sets and number of measurements for each loading condition, and modifications in the network configuration due to inclusion or exclusion of some pipes affected by valve operations in each loading condition. Uncertainty in parameter estimates can also be obtained. The method is applied for the estimation of parameters in a metropolitan urban water-distribution system in India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an efficient Simulated Annealing with valid solution mechanism for finding an optimum conflict-free transmission schedule for a broadcast radio network. This is known as a Broadcast Scheduling Problem (BSP) and shown as an NP-complete problem, in earlier studies. Because of this NP-complete nature, earlier studies used genetic algorithms, mean field annealing, neural networks, factor graph and sum product algorithm, and sequential vertex coloring algorithm to obtain the solution. In our study, a valid solution mechanism is included in simulated annealing. Because of this inclusion, we are able to achieve better results even for networks with 100 nodes and 300 links. The results obtained using our methodology is compared with all the other earlier solution methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the theoretical treatments of the dynamics of solvation of a newly created ion in a dipolar solvent, the self-motion of the solute is usually ignored. Recently, it has been shown that for a light ion the translational motion of the ion can significantly enhance its own rate of solvation. Therefore, solvation itself may not be the rate determining step in the equilibration. Instead, the rate determining step is the search of the low energy configuration which serves to localize the light ion. In this article a microscopic calculation of the probability distribution of the interaction energy of the nascent charge with the dipolar solvent molecules is presented in order to address this problem of solute trapping. It is found that to a good approximation, this distribution is Gaussian and the second moment of this distribution is exactly equal to the half of its own solvation energy. It is shown that this is in excellent agreement with the simulation results that are available for the model Brownian dipolar lattice and for liquid acetonitrile. If the distortion of the solvent by the ion is negligible then the same relation gives the energy distribution for the solvated ion, with the average centered at the final equilibrium solvation energy. These results are expected to be useful in understanding various chemical processes in dipolar liquids. Another interesting outcome of the present study is a simple dynamic argument that supports Onsager's ''inverse snow-ball'' conjecture of solvation of a light ion. A simple derivation of the semi-phenomenological relation between the solvation time correlation function and the single particle orientation, reported recently by Maroncelli et al. (J. Phys. Chem. 97 (1993) 13), is also presented.