932 resultados para Discrete Fourier transforms
Resumo:
L’obiettivo del presente lavoro di tesi è stato quello di analizzare i campioni di otoliti delle due specie del genere Mullus (Mullus barbatus e Mullus surmuletus) per mezzo dell’Analisi Ellittica di Fourier (EFA) e l’analisi di morfometria classica con gli indici di forma, al fine di verificare la simmetria tra l’otolite destro e sinistro in ognuna delle singole specie di Mullus e se varia la forma in base alla taglia dell’individuo. Con l’EFA è stato possibile mettere a confronto le forme degli otoliti facendo i confronti multipli in base alla faccia, al sesso e alla classe di taglia. Inoltre è stato fatto un confronto tra le forme degli otoliti delle due specie. Dalle analisi EFA è stato possibile anche valutare se gli esemplari raccolti appartenessero tutti al medesimo stock o a stock differenti. Gli otoliti appartengono agli esemplari di triglia catturati durante la campagna sperimentale MEDITS 2012. Per i campioni di Mullus surmuletus, data la modesta quantità, sono stati analizzati anche gli otoliti provenienti dalla campagna MEDITS 2014 e GRUND 2002. I campioni sono stati puliti e analizzati allo stereomicroscopio con telecamera e collegato ad un PC fornito di programma di analisi di immagine. Dalle analisi di morfometria classica sugli otoliti delle due specie si può sostenere che in generale vi sia una simmetria tra l’otolite destro e sinistro. Dalle analisi EFA sono state riscontrate differenze significative in tutti i confronti, anche nel confronto tra le due specie. I campioni sembrano però appartenere al medesimo stock. In conclusione si può dire che l’analisi di morfometria classica ha dato dei risultati congrui con quello che ci si aspettava. I risultati dell’analisi EFA invece hanno evidenziato delle differenze significative che dimostrano una superiore potenza discriminante. La particolare sensibilità dell’analisi dei contorni impone un controllo di qualità rigoroso durante l’acquisizione delle forme.
Resumo:
Questa tesi affronta uno dei principali argomenti trattati dalla finanza matematica: la determinazione del prezzo dei derivati finanziari. Esistono diversi metodi per trattare questo tema, ma in particolare vengono illustrati i metodi che usano la trasformata di Fourier. Questi ultimi infatti ci permettono di sostituire il calcolo dell'attesa condizionata scontata, con il calcolo dell'integrale della trasformata di Fourier, in quanto la funzione caratteristica, cioè la trasformata di Fourier della funzione densità, è più trattabile rispetto alla funzione densità stessa. Vengono in primo luogo analizzate alcune importanti formule di valutazione e successivamente implementate, attraverso il software Mathematica. I modelli di riferimento utilizzati per l'implementazione sono il modello di Black-Scholes e il modello di Merton.
Resumo:
Questo elaborato si concentra sullo studio della trasformata di Fourier e della trasformata Wavelet. Nella prima parte della tesi si analizzano gli aspetti fondamentali della trasformata di Fourier. Si definisce poi la trasformata di Fourier su gruppi abeliani finiti, richiamando opportunamente la struttura di tali gruppi. Si mostra che calcolare la trasformata di Fourier nel quoziente richiede un minor numero di operazioni rispetto a calcolarla direttamente nel gruppo di partenza. L'ultima parte dell'elaborato si occupa dello studio delle Wavelet, dette ondine. Viene presentato quindi il sistema di Haar che permette di definire una funzione come serie di funzioni di Haar in alternativa alla serie di Fourier. Si propone poi un vero e proprio metodo per la costruzione delle ondine e si osserva che tale costruzione è strettamente legata all'analisi multirisoluzione. Un ruolo cruciale viene svolto dall'identità di scala, un'identità algebrica che permette di definire certi coefficienti che determinano completamente le ondine. Interviene poi la trasformata di Fourier che riduce la ricerca dei coefficienti sopra citati, alla ricerca di certe funzioni opportune che determinano esplicitamente le Wavelet. Non tutte le scelte di queste funzioni sono accettabili. Ci sono vari approcci, qui viene presentato l'approccio di Ingrid Daubechies. Le Wavelet costituiscono basi per lo spazio di funzioni a quadrato sommabile e sono particolarmente interessanti per la decomposizione dei segnali. Sono quindi in relazione con l'analisi armonica e sono adottate in un gran numero di applicazioni. Spesso sostituiscono la trasformata di Fourier convenzionale.
Resumo:
Conventional time-domain optical coherence tomography (OCT) has become an important tool for following dry or exudative age-related macular degeneration (AMD). Fourier-domain three-dimensional (3D) OCT was recently introduced. This study tested the reproducibility of 3D-OCT retinal thickness measurements in patients with dry and exudative AMD.
Resumo:
To evaluate the intraoperative use of handheld Fourier-domain optical coherence tomography (OCT) during Descemet stripping automated endothelial keratoplasty (DSAEK) to assess the donor-host interface.
Resumo:
This paper presents parallel recursive algorithms for the computation of the inverse discrete Legendre transform (DPT) and the inverse discrete Laguerre transform (IDLT). These recursive algorithms are derived using Clenshaw's recurrence formula, and they are implemented with a set of parallel digital filters with time-varying coefficients.
Resumo:
Clenshaw’s recurrenee formula is used to derive recursive algorithms for the discrete cosine transform @CT) and the inverse discrete cosine transform (IDCT). The recursive DCT algorithm presented here requires one fewer delay element per coefficient and one fewer multiply operation per coeflident compared with two recently proposed methods. Clenshaw’s recurrence formula provides a unified development for the recursive DCT and IDCT algorithms. The M v e al gorithms apply to arbitrary lengtb algorithms and are appropriate for VLSI implementation.