934 resultados para Digestive enzyme
Resumo:
In renovascular hypertensive rats, low doses of angiotensin converting enzyme (ACE) inhibitors have been found to prevent myocardial hypertrophy independent of blood pressure level. This finding would suggest humoral rather than mechanical control of myocyte growth. The aim of this study was to examine the effect of nonantihypertensive doses of ACE inhibitor on myocardial hypertrophy and necrosis in hypertensive rats. Renovascular hypertension (RHT) was induced in four-week-old Wistar rats. Twenty-eight animals were treated for four weeks with three doses of ramipril (0.01, 0.1 or 1.0 mg/kg/day, which are unable to lower blood pressure. Fourteen animals were not treated (RHT group). A sham operated, age/sex-matched group was used as control (n=10). Myocardial histology was analysed in 3 μm thick sections of the ventricle stained with either haematoxylin-eosin, reticulin silver stain or Masson's trichrome. There was a significant correlation between systolic blood pressure and left ventricular to body weight ratio in both sets of animals: untreated plus controls and ramipril-treated rats. ACE inhibition prevented myocyte and perivascular necrosis and fibrosis in a dose-dependent manner. We conclude that myocardial hypertrophy in rats with renovascular hypertension is directly related to arterial pressure, and that this relationship is not affected by nonantihypertensive doses of ACE inhibitor. Myocardial necrosis/fibrosis and coronary artery damage induced by angiotensin II are prevented by ACE inhibitor in a dose-dependent manner, despite the presence of arterial hypertension.
Resumo:
This review aims to report the major control mechanisms of protein and peptides digestion of special interest in human patients. Regarding protein assimilation its digestive process begins at the stomach with some not so indispensable actions comparatively to those of duodenal/jejunal lumen. However even the intestine processes are partially under gastric secretion control. Proteolytic enzyme activities are related to protein structure and amino acid constituents, tertiary and quartenary structures need HCl - denaturation prior to enzymatic hydrolysis. Thereafter the exopeptidases are guided by either NH 2 (aminopeptidases) or COOH (carboxypeptidases) terminals of the molecule while endopeptidases are oriented by the specific amino acids constituents of the peptide. Both dietary and luminal secreted proteins and polypeptides undergo to either limited or complete proteolysis resulting basic or neutral free-amino acids (40%) or dioctapeptides. The brush border peptidases continue to degrade oligopeptide to di-tripeptides and neutral free-amino acids. Some peptides are uptaked by the enterocytes whose cytosolic peptidases complete the hydrolysis. Hence the digestive products flowing in the portal vein are mainly free-amino acids from either luminal or cytosolic hydrolysis and some di-tripeptides intactly absorbed. Both mechanical and chemical processes of digestion are under neural (vagal), neuroendocrinal(acetilcholine),endocrinal(gastrin, secretin and cholecystokinin) or paracrinal (histamine) controls. The gastric phase (hydrochloric acid and pepsinogen secretions) is activated by gastrin, histamine and acetilcholine which respond to both dietary-amino acids (tryptophan and phenylalanine) and mechanic distention of stomach. The pancreatic secretion is stimulated by either cephalic or gastric phases and has influence on the intestinal phase of digestion. The intestinal types of cells S and I release secretin and cholecystokinin respectively in response of acid quimo (cells S) or amino acids and peptides (cells I) in the lumen. Secretin stimulates the releasing of water, bicarbonate and enteropeptidases whereas cholecystokinin acts on pancreatic enzymes.
Resumo:
This research deals with the analysis of the enzymes present in thoracic gland extracts from newly emerged, nurse workers, forager workers, newly emerged males, and mature males of A. mellifera L. (Hymenoptera, Apoidea, Apidae). The enzymes found in larger quantities in the thoracic gland occurred in all classes of workers and are digestive. Acid phosphatase and Naphtol-AS-BI-phosphohydrolase act in protein synthesis, leucine arylamidase hydrolyses proteins and a-glucosidase actuate in the nectar processing into honey. Naphtol-AS-BI-phosphohydrolase was found in larger quantities only in workers, this suggests action in protein synthesis by the thoracic gland, b-galactosidase is in larger amounts in the newly emerged bees (workers and males) this aids in the provision of other substances to be used as an energy source when glucose or sucrose are absent. Differences between enzymatic profiles from workers and males are usually related to their colony tasks, or related to their physiological necessities per individual in specific life stages.
Resumo:
We report nuclear acid phosphatase activity in the somatic (intra-ovariolar and stromatic) and germ cells of differentiating honey bee worker ovaries, as well as in the midgut cells of metamorphosing bees. There was heterogeneity in the intensity and distribution of electron dense deposits of lead phosphate, indicative of acid phosphatase activity in the nuclei of these tissues, during different phases of post-embryonic bee development. This heterogeneity was interpreted as a variation of the nuclear functional state, related to the cell functions in these tissues.
Resumo:
Currently, there are 8 million new cases and 2 million deaths annually from tuberculosis, and it is expected that a total of 225 million new cases and 79 million deaths will occur between 1998 and 2030. The reemergence of tuberculosis as a public health threat, the high susceptibility of HIV-infected persons, and the proliferation of multi-drug-resistant strains have created a need to develop new antimycobacterial agents. The existence of homologues to the shikimate pathway enzymes has been predicted by the determination of the genome sequence of Mycobacterium tuberculosis. We have previously reported the cloning and overexpression of M. tuberculosis aro A-encoded EPSP synthase in both soluble and active forms, without IPTG induction. Here, we describe the purification of M. tuberculosis EPSP synthase (mtEPSPS) expressed in Escherichia coli BL21(DE3) host cells. Purification of mtEPSPS was achieved by a one-step purification protocol using an anion exchange column. The activity of the homogeneous enzyme was measured by a coupled assay using purified shikimate kinase and purine nucleoside phosphorylase proteins. A total of 53 mg of homogeneous enzyme could be obtained from 1 L of LB cell culture, with a specific activity value of approximately 18 U mg-1. The results presented here provide protein in quantities necessary for structural and kinetic studies, which are currently underway in our laboratory. © 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Trypsin activity increases in the midgut of Anopheles aquasalis, Anopheles albitarsis, and Anopheles darlingi after a bloodmeal. The activity returns to basal levels at the time the blood is completely digested. Affinity chromatography, reversed-phase high performance liquid chromatography (HPLC), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were used to sequentially purify the mosquito trypsins found in the midguts at 24 h after feeding. Amino-terminal sequencing of the purified trypsins showed the occurrence of two distinct trypsins in the midgut of each of the mosquitoes studied. The sequences obtained are similar to those of the trypsins of other hematophagous insects.
Resumo:
Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of mortality due to a bacterial pathogen. According to the 2004 Global TB Control Report of the World Health Organization, there are 300,000 new cases per year of multi-drug resistant strains (MDR-TB), defined as resistant to isoniazid and rifampicin, and 79% of MDR-TB cases are now super strains, resistant to at least three of the four main drugs used to treat TB. Thus there is a need for the development of effective new agents to treat TB. The shikimate pathway is an attractive target for the development of antimycobacterial agents because it has been shown to be essential for the viability of M. tuberculosis, but absent from mammals. The M. tuberculosis aroG-encoded 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (mtDAHPS) catalyzes the first committed step in this pathway. Here we describe the PCR amplification, cloning, and sequencing of aroG structural gene from M. tuberculosis H37Rv. The expression of recombinant mtDAHPS protein in the soluble form was obtained in Escherichia coli Rosetta-gami (DE3) host cells without IPTG induction. An approximately threefold purification protocol yielded homogeneous enzyme with a specific activity value of 0.47 U mg-1 under the experimental conditions used. Gel filtration chromatography results demonstrate that recombinant mtDAHPS is a pentamer in solution. The availability of homogeneous mtDAHPS will allow structural and kinetics studies to be performed aiming at antitubercular agents development. © 2004 Elsevier Inc. All rights reserved.
Resumo:
Hydrolytic enzymes from hypopharyngeal gland extracts of newly emerged, nurse and foraging workers of two eusocial bees, Scaptotrigona postica, a native Brazilian stingless bee, and the Africanized honey bee (Apis mellifera) in Brazil, were compared. The hypopharyngeal gland is rich in enzymes in both species. Fifteen different enzymes were found in the extracts, with only a few quantitative differences between the species. Some of the enzymes present in the extracts may have intracellular functions, while others seem to be digestive enzymes. Scaptotrigona postica, had lower β-glucosidase and higher lipase esterase activities than A. mellifera. The differences may be due to different feeding habits and behavioral peculiarities of the two species. ©FUNPEC-RP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work was carried out at the Faculdade de Ciências Agronômicas - UNESP, Botucatu, SP. The purpose of the study was to evaluate the physiological and biochemical behavior of sweet pepper (Capsicum annuum L.) plants under different soil water availability conditions and the efficiency of the peroxidase (EC. 1.11.1.7) activity as an indicator of water stress in plants. Sweet pepper plants were grown for 230 days after transplanting of seedlings. The experiment was arranged in a completely randomized experimental design with 4 treatments, two irrigation managements (50 and 1500 kPa) and two soil surface managements (presence or absence of black polyethylene covering), and six replications. Physiological activities, such as stomatal transpiration and resistance to water vapor diffusion, were evaluated, as well as biochemical activities, such as peroxidase activity and total soluble protein in foliar tissues. It was observed that soil water availability may lead to physiological and biochemical alterations in plants. Successive water stress cycles may promote the development of characteristics responsible for improving the plant tolerance to periods of low water availability. The peroxidase enzyme activity showed to be an efficient indicator of water stress in sweet pepper plants.
Resumo:
The histology (H.E.), histochemistry (carbohydrates, proteins, collagen, and calcium), enzyme profile (ATPase and Acid phosphatase), and ultramorphology of the ileum of Cephalotes atratus, C. clypeatus and C. pusillus were studied in order to obtain some information about the similarities of these species. The relationship among these three species, as well as the results obtained for the wall, and the contents of this portion of the digestive tract were discussed. In C. clypeatus the ileum is somewhat smaller than that of C. atratus, despite the similarities in body size. The ATPase results showed 2 different regions: the anterior region responsible for absorbing material from the haemolymph and the posterior region for absorbtion from the ileum lumen. Other histochemical analyses failed to show any differences.
Resumo:
Chagas disease (CD), caused by the protozoan Trypanossoma cruzi, affects approximately 18 million individuals in the Americas, 5 million of which five in Brazil. Most chronic sufferers have either the indeterminate form of the disease, without organic compromise, or the cardiac or digestive forms. Despite the importance of this disease, there is no information on the effect of nutrition on CD evolution. We evaluated the clinical-nutritional profile of individuals with CD treated at the Tropical Diseases Nutrition Out-Patient Clinic of the Botucatu School of Medicine, UNESP.A retrospective cohort study was performed between 2002 and 2006, on 66 patients with serum and parasitological diagnosis of CD. Epidemiological, clinical, nutritional, and biochemical data were collected, including gender, age, skin color, smoking, alcoholism, physical activity, weight, stature, body mass index, abdominal circumference, glycemia, and lipid profile. Fifty-three percent were mate and 47% female; 96% were white skinned. Mean age was 49.6±6.36 years. The predominant form was indeterminate in 71 %; smoking and drinking were recorded in 23% and 17%, respectively. Sedentariness predominated in 83%, and 55% presented increased abdominal circumference. Most, 94%, were overweight or obese. The biochemical exam revealed hyperglycemia in 12% and dyslipidemia in 74%. These findings suggest that the Chagas population presents co-morbidities and risk factors for developing chronic non-transmissible diseases, including cardiovascular diseases, making CD evolution even worse. © 2007 by The Brazilian Journal of Infectious Diseases and Contexto Publishing. All rights reserved.
Resumo:
Most of the tasks in genome annotation can be at least partially automated. Since this annotation is time-consuming, facilitating some parts of the process - thus freeing the specialist to carry out more valuable tasks - has been the motivation of many tools and annotation environments. In particular, annotation of protein function can benefit from knowledge about enzymatic processes. The use of sequence homology alone is not a good approach to derive this knowledge when there are only a few homologues of the sequence to be annotated. The alternative is to use motifs. This paper uses a symbolic machine learning approach to derive rules for the classification of enzymes according to the Enzyme Commission (EC). Our results show that, for the top class, the average global classification error is 3.13%. Our technique also produces a set of rules relating structural to functional information, which is important to understand the protein tridimensional structure and determine its biological function. © 2009 Springer Berlin Heidelberg.