980 resultados para Diffusion Equation
Resumo:
Benedict-Webb-Rubin equation of state constants for NO, O2, and the equilibrium mixture N2O4 ⇄ 2NO2 are reported.
Resumo:
Extended self-similarity (ESS), a procedure that remarkably extends the range of scaling for structure functions in Navier-Stokes turbulence and thus allows improved determination of intermittency exponents, has never been fully explained. We show that ESS applies to Burgers turbulence at high Reynolds numbers and we give the theoretical explanation of the numerically observed improved scaling at both the IR and UV end, in total a gain of about three quarters of a decade: there is a reduction of subdominant contributions to scaling when going from the standard structure function representation to the ESS representation. We conjecture that a similar situation holds for three-dimensional incompressible turbulence and suggest ways of capturing subdominant contributions to scaling.
Resumo:
The electron-energy equation for an atomic radiating plasma is considered in this work. Using the atomic model of Bates, Kingston and McWhirter, the radiation loss-term valid for all optical thicknesses is obtained. A study of the energy gained by electrons in inelastic collisions shows that the radiation loss term can be neglected only for rapidly-decaying or fast-growing plasmas. Emission from optically thin plasmas is considered next and an exact expression is given for the total radiation loss in a recombination continuum. A derivation of the Kramers-Unsöld approximation is presented and the error involved in estimating the total emitted recombination radiation by this approximation is shown to be small.
Resumo:
In this paper we shall study a fractional integral equation in an arbitrary Banach space X. We used the analytic semigroups theory of linear operators and the fixed point method to establish the existence and uniqueness of solutions of the given problem. We also prove the existence of global solution. The existence and convergence of the Faedo–Galerkin solution to the given problem is also proved in a separable Hilbert space with some additional assumptions on the operator A. Finally we give an example to illustrate the applications of the abstract results.
Resumo:
We report a nuclear magnetic resonance (NMR) study of confined water inside similar to 1.4 nm diameter single-walled carbon nanotubes (SWNTs). We show that the confined water does not freeze even up to 223 K. A pulse field gradient (PFG) NMR method is used to determine the mean squared displacement (MSD) of the water molecules inside the nanotubes at temperatures below 273 K, where the bulk water outside the nanotubes freezes and hence does not contribute to the proton NMR signal. We show that the mean squared displacement varies as the square root of time, predicted for single-file diffusion in a one-dimensional channel. We propose a qualitative understanding of our results based on available molecular dynamics simulations.
Resumo:
We use atomistic molecular dynamics (MD) simulations to study the diffusion of water molecules confined inside narrow (6,6) carbon nanorings. The water molecules form two oppositely polarized chains. It is shown that the effective interaction between these two chains is repulsive in nature. The computed mean-squared displacement (MSD) clearly shows a scaling with time
Resumo:
Using Thomé's procedure, the asymptotic solutions of the Frieman and Book equation for the two-particle correlation in a plasma have been obtained in a complete form. The solution is interpreted in terms of the Lorentz distance. The exact expressions for the internal energy and pressure are evaluated and they are found to be a generalization of the result obtained earlier by others.
Resumo:
The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In positron emission tomography (PET), image reconstruction is a demanding problem. Since, PET image reconstruction is an ill-posed inverse problem, new methodologies need to be developed. Although previous studies show that incorporation of spatial and median priors improves the image quality, the image artifacts such as over-smoothing and streaking are evident in the reconstructed image. In this work, we use a simple, yet powerful technique to tackle the PET image reconstruction problem. Proposed technique is based on the integration of Bayesian approach with that of finite impulse response (FIR) filter. A FIR filter is designed whose coefficients are determined based on the surface diffusion model. The resulting reconstructed image is iteratively filtered and fed back to obtain the new estimate. Experiments are performed on a simulated PET system. The results show that the proposed approach is better than recently proposed MRP algorithm in terms of image quality and normalized mean square error.
Resumo:
Researchers within the fields of economic geography and organizational management have extensively studied learning and the prerequisites and impediments for knowledge transfer. This paper combines two discourses within the two subjects: the-communities-of-practice and the learning region approaches, merging them through the so-called ecology of knowledge-approach, which is used to examine the knowledge transfer from the House of Fabergé to the Finnish jewellery industry. We examine the pre-revolution St Petersburg jewellery cluster and the post-revolution Helsinki, and the transfer of knowledge between these two locations through the components of communities of people, institutions and industry. The paper shows that the industrial dynamics of the Finnish modern-day goldsmith industry was inherently shaped both through the transfer and the non-transfer of knowledge. It also contends that the “knowledge-economy” is not anchored in and exclusive for the high technology sector of the late 20th century.
Resumo:
A molecular theory of collective orientational relaxation of dipolar molecules in a dense liquid is presented. Our work is based on a generalized, nonlinear, Smoluchowski equation (GSE) that includes the effects of intermolecular interactions through a mean‐field force term. The effects of translational motion of the liquid molecules on the orientational relaxation is also included self‐consistently in the GSE. Analytic expressions for the wave‐vector‐dependent orientational correlation functions are obtained for one component, pure liquid and also for binary mixtures. We find that for a dipolar liquid of spherical molecules, the correlation function ϕ(k,t) for l=1, where l is the rank of the spherical harmonics, is biexponential. At zero wave‐vector, one time constant becomes identical with the dielectric relaxation time of the polar liquid. The second time constant is the longitudinal relaxation time, but the contribution of this second component is small. We find that polar forces do not affect the higher order correlation functions (l>1) of spherical dipolar molecules in a linearized theory. The expression of ϕ(k,t) for a binary liquid is a sum of four exponential terms. We also find that the wave‐vector‐dependent relaxation times depend strongly on the microscopic structure of the dense liquid. At intermediate wave vectors, the translational diffusion greatly accelerates the rate of orientational relaxation. The present study indicates that one must pay proper attention to the microscopic structure of the liquid while treating the translational effects. An analysis of the nonlinear terms of the GSE is also presented. An interesting coupling between the number density fluctuation and the orientational fluctuation is uncovered.
Resumo:
A simple, sufficiently accurate and efficient method for approximate solutions of the Falkner-Skan equation is proposed here for a wide range of the pressure gradient parameter. The proposed approximate solutions are obtained utilising a known solution of another differential equation.