972 resultados para Different Proteins
Resumo:
Background: A natural glycoprotein usually exists as a spectrum of glycosylated forms, where each protein molecule may be associated with an array of oligosaccharide structures. The overall range of glycoforms can have a variety of different biophysical and biochemical properties, although details of structure–function relationships are poorly understood, because of the microheterogeneity of biological samples. Hence, there is clearly a need for synthetic methods that give access to natural and unnatural homogeneously glycosylated proteins. The synthesis of novel glycoproteins through the selective reaction of glycosyl iodoacetamides with the thiol groups of cysteine residues, placed by site-directed mutagenesis at desired glycosylation sites has been developed. This provides a general method for the synthesis of homogeneously glycosylated proteins that carry saccharide side chains at natural or unnatural glycosylation sites. Here, we have shown that the approach can be applied to the glycoprotein hormone erythropoietin, an important therapeutic glycoprotein with three sites of N-glycosylation that are essential for in vivo biological activity. Results: Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His10-WThEPO, His10-Asn24Cys, His10-Asn38Cys, His10-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l−1 from Escherichia coli. Chemical glycosylation with glycosyl-β-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. Conclusions: Erythropoietin expressed in E. coli bearing specific Asn→Cys mutations at natural glycosylation sites can be glycosylated using β-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins. Results: Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His10-WThEPO, His10-Asn24Cys, His10-Asn38Cys, His10-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l−1 from Escherichia coli. Chemical glycosylation with glycosyl-β-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. Conclusions: Erythropoietin expressed in E. coli bearing specific Asn→Cys mutations at natural glycosylation sites can be glycosylated using β-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins
Resumo:
Transmembrane proteins play crucial roles in many important physiological processes. The intracellular domain of membrane proteins is key for their function by interacting with a wide variety of cytosolic proteins. It is therefore important to examine this interaction. A recently developed method to study these interactions, based on the use of liposomes as a model membrane, involves the covalent coupling of the cytoplasmic domains of membrane proteins to the liposome membrane. This allows for the analysis of interaction partners requiring both protein and membrane lipid binding. This thesis further establishes the liposome recruitment system and utilises it to examine the intracellular interactome of the amyloid precursor protein (APP), most well-known for its proteolytic cleavage that results in the production and accumulation of amyloid beta fragments, the main constituent of amyloid plaques in Alzheimer’s disease pathology. Despite this, the physiological function of APP remains largely unclear. Through the use of the proteo-liposome recruitment system two novel interactions of APP’s intracellular domain (AICD) are examined with a view to gaining a greater insight into APP’s physiological function. One of these novel interactions is between AICD and the mTOR complex, a serine/threonine protein kinase that integrates signals from nutrients and growth factors. The kinase domain of mTOR directly binds to AICD and the N-terminal amino acids of AICD are crucial for this interaction. The second novel interaction is between AICD and the endosomal PIKfyve complex, a lipid kinase involved in the production of phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) from phosphatidylinositol-3-phosphate, which has a role in controlling ensdosome dynamics. The scaffold protein Vac14 of the PIKfyve complex binds directly to AICD and the C-terminus of AICD is important for its interaction with the PIKfyve complex. Using a recently developed intracellular PI(3,5)P2 probe it is shown that APP controls the formation of PI(3,5)P2 positive vesicular structures and that the PIKfyve complex is involved in the trafficking and degradation of APP. Both of these novel APP interactors have important implications of both APP function and Alzheimer’s disease. The proteo-liposome recruitment method is further validated through its use to examine the recruitment and assembly of the AP-2/clathrin coat from purified components to two membrane proteins containing different sorting motifs. Taken together this thesis highlights the proteo-liposome recruitment system as a valuable tool for the study of membrane proteins intracellular interactome. It allows for the mimicking of the protein in its native configuration therefore identifying weaker interactions that are not detected by more conventional methods and also detecting interactions that are mediated by membrane phospholipids.
Resumo:
The production of recombinant therapeutic proteins is an active area of research in drug development. These bio-therapeutic drugs target nearly 150 disease states and promise to bring better treatments to patients. However, if new bio-therapeutics are to be made more accessible and affordable, improvements in production performance and optimization of processes are necessary. A major challenge lies in controlling the effect of process conditions on production of intact functional proteins. To achieve this, improved tools are needed for bio-processing. For example, implementation of process modeling and high-throughput technologies can be used to achieve quality by design, leading to improvements in productivity. Commercially, the most sought after targets are secreted proteins due to the ease of handling in downstream procedures. This chapter outlines different approaches for production and optimization of secreted proteins in the host Pichia pastoris. © 2012 Springer Science+business Media, LLC.
Resumo:
Phosphatase and tensin homolog (PTEN) is involved in a number of different cellular processes including metabolism, apoptosis, cell proliferation and survival. It is a redox-sensitive dual-specificity protein phosphatase that acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of redox regulation of PTEN downstream signaling has been reported, the effect of PTEN redox status on its protein-protein interactions is poorly understood. PTEN-GST in its reduced and a DTT-reversible H2O2-oxidized form was immobilized on a glutathione-sepharose support and incubated with cell lysate to capture interacting proteins. Captured proteins were analyzed by LC-MSMS and comparatively quantified using label-free methods. 97 Potential protein interactors were identified, including a significant number that are novel. The abundance of fourteen interactors was found to vary significantly with the redox status of PTEN. Altered binding to PTEN was confirmed by affinity pull-down and Western blotting for Prdx1, Trx, and Anxa2, while DDB1 was validated as a novel interactor with unaltered binding. These results suggest that the redox status of PTEN causes a functional variation in the PTEN interactome. The resin capture method developed had distinct advantages in that the redox status of PTEN could be directly controlled and measured.
Resumo:
Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins (RAMP) 2 and 3, respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMPs 2 and 3 on the activation and conformation of the CLR subunit of AM receptors we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors and determined the effects on cAMP signalling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modelling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket, and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function.
Resumo:
Expression of antibodies or antibody fragments in plants is a useful tool for producing active antibody derivatives for diagnostic or pharmaceutical purposes as well as for immunomodulation. We investigated the effect of cellular expression site on the stability and yield of double-stranded RNA (dsRNA)-specific single-chain Fv-fragments (scFv) in transgenic tobacco. Two antibodies (J2 and P6) belonging to the V23(J558) heavy chain variable gene family but differing in the light chain variable domain were used. scFvs were targeted to the cytoplasm – with or without anchoring them in the plasma membrane –, into the endoplasmic reticulum (ER) and to the apoplast. Although high mRNA concentrations were detected in all cases, scFv proteins accumulated only when scFvs were made ER-resident by appropriate signal sequences. When the ER retention signal was removed to allow scFv-secretion to the apoplast, no scFv-proteins were detected. Despite the strong homology of the VH-sequences of J2 and P6 antibodies, only P6 provided a stable scFv scaffold for intracytoplasmic expression. J2-scFv could not be stabilised neither by adding a C-terminal stabilisation signal nor by anchoring the protein at the cytoplasmic side of the plasma membrane (PM). It was found that dsRNA-specific J2-scFvs are active in vivo and enhance Potato Virus Y induced symptoms in infected tobacco. This is the first report describing the expression and biological effect of RNA-specific antibodies in plants.
Resumo:
In many vertebrate and invertebrate species mediators of innate immunity include antimicrobial peptides (AMPs) such as peptide fragments of histones and other proteins with previously ascribed different functions. Shark AMPs have not been described and this research examines the antibacterial activity of nurse shark (Ginglymostoma cirratum) peripheral blood leukocyte lysates. Screening of lysates prepared by homogenizing unstimulated peripheral blood leukocytes identified muramidase (lysozyme-like) and non-muramidase antibacterial activity. Lysates were tested for lysozyme using the lysoplate assays, and antibacterial (AB) activity was assayed for by a microdilution growth assay that was developed using Planococcus citreus as the target bacterium. Fractionation of crude lysates by ion exchange and affinity chromatography was followed by a combination of SDS-PAGE with LC/MS-MS and/or N-terminal sequence analysis of low molecular weight protein bands (<20 kDa). This yielded several peptides with amino acid sequence similarity to lysozyme, ubiquitin, hemoglobin, human histones H2A, H2B and H4 and to antibacterial histone fragments of the catfish and the Asian toad. Not all peptide sequences corresponded to peptides potentially antibacterial. The correlation of a specific protein band in active lysate fractions was accomplished by employing the acid-urea gel overlay assays in which AB activity was seen as zones of growth inhibition on a lawn of P. citreus at a position corresponding to that of the putative AB protein band. This study is the first to describe putative AMPs in the shark and their potential role in innate immunity.^
Resumo:
Reactive oxygen species are a normal consequence of life in an aerobic environment. However when they deviate from the narrow permissible range in cells, oxidative damage can occur. Dictyostelium discoideum is a model organism ideal for the study of cell signaling events such as those affected by oxidative stress. It was previously shown that Ras signaling in Dictyostelium is affected by genetic inactivation of the antioxidant enzyme Superoxide dismutase C (SodC) and in vitro data suggests that the NKCD motif of Ras is the redox target of superoxide. The main objective of this project was to determine the mechanism of superoxide mediated Ras regulation in vivo. To accomplish the main objective, we cloned, and in some cases, mutated different Ras proteins and later determined their activity in wild type and sodC- cells. RasC and RasD showed normal activation in sodC- cells, however RasG and RasS displayed high Ras activity. These last two Ras proteins contain the NKC118D motif inside the nucleotide binding region. A mutation of cysteine118 to alanine in RasG rendered the protein less active in sodC- than the wild type RasG protein and a mutation alanine118 to cysteine in RasD conferred redox sensitivity to this small GTPase. Additionally, the propensity of RasG to be targeted by superoxide was evident when the environment of wild type cells was manipulated to induce the internal generation of superoxide through changes in the extracellular ion levels mainly magnesium. Lack of magnesium ions increased the intracellular level of superoxide and severely hampered directional cell migration. Chemotaxis of cells expressing RasG was negatively impacted by the absence of magnesium ions; however rasG- cells did not seem to be affected in their ability to perform chemotaxis. The last experiment implies that RasG is an important mediator of cell signaling during oxidative stress, responsible for preventing cells from continuing their developmental program. Our study suggests that the cysteine residue in the NKCD motif is essential for mediating the redox sensitivity of Ras proteins in Dictyostelium and that RasG is an essential mediator of the response to oxidative stress in this organism.
Resumo:
G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor conformational states, explaining the pharmacological preferences of calcitonin receptor-RAMP complexes. This provides novel insight into our understanding of G protein-coupled receptor-protein interaction that is likely broadly applicable for this receptor class.
Resumo:
Proteins are specialized molecules that catalyze most of the reactions that can sustain life, and they become functional by folding into a specific 3D structure. Despite their importance, the question, "how do proteins fold?" - first pondered in in the 1930's - is still listed as one of the top unanswered scientific questions as of 2005, according to the journal Science. Answering this question would provide a foundation for understanding protein function and would enable improved drug targeting, efficient biofuel production, and stronger biomaterials. Much of what we currently know about protein folding comes from studies on small, single-domain proteins, which may be quite different from the folding of large, multidomain proteins that predominate the proteomes of all organisms.
In this thesis I will discuss my work to fill this gap in understanding by studying the unfolding and refolding of large, multidomain proteins using the powerful combination of single-molecule force-spectroscopy experiments and molecular dynamic simulations.
The three model proteins studied - Luciferase, Protein S, and Streptavidin - lend insight into the inter-domain dependence for unfolding and the subdomain stabilization of binding ligands, and ultimately provide new insight into atomistic details of the intermediate states along the folding pathway.
Resumo:
Canalization is a result of intrinsic developmental buffering that ensures phenotypic robustness under genetic variation and environmental perturbation. As a consequence, animal phenotypes are remarkably consistent within a species under a wide range of conditions, a property that seems contradictory to evolutionary change. Study of laboratory model species has uncovered several possible canalization mechanisms, however, we still do not understand how the level of buffering is controlled in natural populations. We exploit wild populations of the marine chordate Ciona intestinalis to show that levels of buffering are maternally inherited. Comparative transcriptomics show expression levels of genes encoding canonical chaperones such as Hsp70 and Hsp90 do not correlate with buffering. However the expression of genes encoding endoplasmic reticulum (ER) chaperones does correlate. We also show that ER chaperone genes are widely conserved amongst animals. Contrary to previous beliefs that expression level of Heat Shock Proteins (HSPs) can be used as a measurement of buffering levels, we propose that ER associated chaperones comprise a cellular basis for canalization. ER chaperones have been neglected by the fields of development, evolution and ecology, but their study will enhance understanding of both our evolutionary past and the impact of global environmental change.
Resumo:
Canalization is a result of intrinsic developmental buffering that ensures phenotypic robustness under genetic variation and environmental perturbation. As a consequence, animal phenotypes are remarkably consistent within a species under a wide range of conditions, a property that seems contradictory to evolutionary change. Study of laboratory model species has uncovered several possible canalization mechanisms, however, we still do not understand how the level of buffering is controlled in natural populations. We exploit wild populations of the marine chordate Ciona intestinalis to show that levels of buffering are maternally inherited. Comparative transcriptomics show expression levels of genes encoding canonical chaperones such as Hsp70 and Hsp90 do not correlate with buffering. However the expression of genes encoding endoplasmic reticulum (ER) chaperones does correlate. We also show that ER chaperone genes are widely conserved amongst animals. Contrary to previous beliefs that expression level of Heat Shock Proteins (HSPs) can be used as a measurement of buffering levels, we propose that ER associated chaperones comprise a cellular basis for canalization. ER chaperones have been neglected by the fields of development, evolution and ecology, but their study will enhance understanding of both our evolutionary past and the impact of global environmental change.
Resumo:
Infection with Schistosoma japonicum causes high levels of pathology that is predominantly determined by the cellular and humoral response of the host. However, the specific antibody response that arises during the development of disease is largely undescribed in Asian schistosomiasis-endemic populations. A schistosome protein microarray was used to compare the antibody profiles of subjects with acute infection, with early or advanced disease associated with severe pathology, with chronic infection, and subjects exposed but stool negative for S. japonicum eggs to the antibody profiles of nonexposed controls. Twenty-five immunodominant antigens were identified, including vaccine candidates, tetraspanin-related proteins, transporter molecules, and unannotated proteins. Additionally, individuals with severe pathology had a limited specific antibody response, suggesting that individuals with mild disease may use a broad and strong antibody response, particularly against surface-exposed proteins, to control pathology and/or infection. Our study has identified specific antigens that can discriminate between S. japonicum-exposed groups with different pathologies and may also allow the host to control disease pathology and provide resistance to parasite infection.
Resumo:
Immunoglobulin production by myeloma plasma cells depends on the unfolded protein response for protein production and folding. Recent studies have highlighted the importance of IRE1alpha and X box binding protein 1 (XBP1), key members of this pathway, in normal B-plasma cell development. We have determined the gene expression levels of IRE1alpha, XBP1, XBP1UNSPLICED (XBP1u), and XBP1SPLICED (XBP1s) in a series of patients with myeloma and correlated findings with clinical outcome. We show that IRE1alpha and XBP1 are highly expressed and that patients with low XBP1s/u ratios have a significantly better overall survival. XBP1s is an independent prognostic marker and can be used with beta2 microglobulin and t(4;14) to identify a group of patients with a poor outcome. Furthermore, we show the beneficial therapeutic effects of thalidomide in patients with low XBP1s/u ratios. This study highlights the importance of XBP1 in myeloma and its significance as an independent prognostic marker and as a predictor of thalidomide response.
Resumo:
Natural rubber latex, an aqueous colloidal dispersion of polyisoprene is widely used in production of gloves, catherers, rubber bands etc. The natural rubber latex content present in products such as gloves causes allergic problems. Of the different types of allergies reported, latex is known to produce Type I and Type IV allergies. Type I is called immediate hypersensitivity and type IV is called delayed hypersensitivity. It has been reported that some of the proteins present in the latex are mainly responsible for the allergic reactions type I. Significant reduction in the allergic response (type I) of natural rubber latex can be achieved by the reduction in its protein content, however out of the total proteins present in the latex or latex film only a fraction is extractable. The major techniques employed to reduce protein content of latex include leaching, autoclaving, chlorination, use of proteolytic enzymes and use of non ionic surfactants. Sulphur vulcanization of dipped products is responsible for Type IV allergy. N-nitrosamine, a carcinogenic substance is produced as a result of sulphur vulcanization. Radiation vulcanization can be used as an alternative for sulphur vulcanization. The current research deals with techniques to reduce the allergy associated with latex products. To reduce the type I allergy, low protein latex is developed using polyethylene glycol, a non- ionic surfactant. The present study employs radiation vulcanization to eliminate type IV allergy. The effect of different cure systems and fillers on the properties of low protein latex is also investigated as a part of the study.