873 resultados para Diazonium salts
Resumo:
Ionic liquid crystals were obtained by coupling one or two mesogenic units (cholesterol or cyanobiphenyl) to an imidazolium cation. Anions are bromide, bis(trifluoromethylsulfonyl)imide, and tetrakis(2-thenoyltrifluoroacetonato)europate(III). The mesomorphism of the compounds depends on the type and number of mesogenic units and on the type of anion. In general, the most stable mesophases are observed for the bis(trifluoromethylsulfonyl)imide salts. Most of the compounds containing cholesterol moieties show enantiotropic SmA* phases over a broad temperature range, and some of them are room temperature liquid crystals. Modeling of the small-angle X-ray scattering patterns revealed the molecular arrangement in these mesophases. On the contrary, most of the compounds containing cyanobiphenyl groups exhibit monotropic lamellar or nematic mesophases, depending on the number of mesogenic units. The imidazolium salts containing the tetrakis(2-thenoyltrifluoroacetonato)europate(III) anion show an intense red photoluminescence.
Resumo:
Imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium, and quaternary ammonium bis(trifluoromethyl-sulfonyl)imide salts were functionalized with a carboxyl group. These ionic liquids are useful for the selective dissolution of metal oxides and hydroxides. Although these hydrophobic ionic liquids are immiscible with water at room temperature, several of them form a single phase with water at elevated temperatures. Phase separation occurs upon cooling. This thermomorphic behavior has been investigated by H-1 NMR, and it was found that it can be attributed to the temperature-dependent hydration and hydrogen-bond formation of the ionic liquid components. The crystal structures of four ionic liquids and five metal complexes have been determined.
Resumo:
We report here the syntheses, characterisation and electrochemistry of some 1-ethyl-3-methylimidazolium, [emim], uranium halide salts. The electrochemistry of the uranium halide salts were investigated in both basic and acidic haloaluminate ionic liquids (ILs). The solid state structures of the uranium chloride salts have previously been reported, but have now been re-evaluted using a new statistical model to determine the presence or absence of weak hydrogen bonding interactions in the crystalline state.
Resumo:
We report here the improved syntheses of 1-alkyl-3-methylimidazolium ionic liquids. Microwave irradiation drastically reduces the preparation time of 1-alkyl-3-methylimidazolium and N-alkylpyridinium halide salts and, in addition, three halide-free routes to ionic liquids have been developed. New, chiral, imidazolium-based ionic liquids were prepared using both conventional and halide-free procedures. Chirality was introduced in the new compounds at either the cation or the anion, or both.
An array-based study of reactivity under solvent-free mechanochemical conditions-insights and trends
Resumo:
An array-based approach is put forward to obtain insight into reactivity under mechanochemical solvent-free conditions. We describe a survey of sixty potential reactions between twelve metal salts MX2 {(M = Cu, X-2 = (OAc)(2), (HCO2)(2), (F3CCO2)(2), (acac)(2), (F(6)acac)(2), (NO3)(2), SO4; M = Ni, X-2 = (OAc)(2), (NO3)(2), SO4; M = Zn, X-2 (OAc)(2), (NO3)(2)} and five bridging organic ligands {isonicotinic acid (HINA), 1,4-benzenedicarboxylic acid (H2BDC), acetylenedicarboxylic acid (H(2)ADC), 1,3,5-benzenetricarboxylic acid (H3BTC), 4,4'-bipyridyl (BIPY). Reaction conditions involved a ball mill, applied for 15 min at 30 Hz, without external heating. When examined by XRPD, forty of the combinations gave detectable reactions, thirty-eight with crystalline products. Of these, twenty-nine reactions were quantitative (consuming all of at least one reactant). Comparison of XRPD patterns with patterns simulated from single crystal X-ray diffraction data in the Cambridge Structural Database allowed structural identification of six products. Of particular interest are the microporous framework materials [Cu(INA)(2)] and [Cu-3(BTC)(2)] (HKUST-1) obtained by reaction of the corresponding carboxylic acids with copper acetate. Other non-porous polymers with 3-dimensional connectivity, [Ni(ADC)(H2O)(4)], or 1-dimensional connectivity, [Cu(acac)(2)(BIPY)] and [Cu(F6acac)(BIPY)] were also obtained. Reaction between zinc acetate and H2ADC gave a new product which had not previously been characterised by single-crystal X-ray crystallography, but whose XRPD pattern suggests that it is isostructural with the known nickel polymer [Ni(ADC)(H2O)(4)]. Two further isostructural nickel and zinc products were obtained in reactions between HINA and nickel nitrate and zinc nitrate. Trends observed within the array are discussed. Copper acetate and copper formate were the most effective starting materials for reaction with carboxylic acids, potentially related to the basicity of their anions and the solvating effects of the formic and acetic acid byproducts. Amongst the ligands there was a general negative corelation between melting point and reactivity. The issue of pore templating in microporous phases and the generation of new structures is also discussed in relation to the Cu(INA)(2), Cu-3(BTC)(2) and nickel nitrate-BIPY systems. Overall, the study suggests that mechanochemical reactivity between metal salts and organic ligands under solvent free conditions is remarkably general. Use of array-based approaches as demonstrated here is advocated a useful way to reveal underlying trends in reactivity under solvent free mechanochemical conditions and to highlight particular cases for more detailed study.
Resumo:
Thecamoebians were examined from 71 surface sediment samples collected from 21 lakes and ponds in the Greater Toronto Area to (1) elucidate the controls on faunal distribution in modern lake environments; and (2) to consider the utility of thecamoebians in quantitative studies of water quality change. This area was chosen because it includes a high density of kettle and other lakes which are threatened by urban development and where water quality has deteriorated locally as a result of contaminant inputs, particularly nutrients. Fifty-eight samples yielded statistically significant thecamoebian populations. The most diverse faunas (highest Shannon Diversity Index values) were recorded in lakes beyond the limits of urban development, although the faunas of all lakes showed signs of sub-optimal conditions. The assemblages were divided into five clusters using Q-mode cluster analysis, supported by Detrended Correspondence Analysis. Canonical Correspondence Analysis (CCA) was used to examine species-environment relationships and to explain the observed clusterings. Twenty-four measured environmental variables were considered, including water property attributes (e.g., pH, conductivity, dissolved oxygen), substrate characteristics, sediment-based phosphorus (Olsen P) and 11 environmentally available metals. The thecamoebian assemblages showed a strong association with phosphorus, reflecting the eutrophic status of many of the lakes, and locally to elevated conductivity measurements, which appear to reflect road salt inputs associated with winter de-icing operations. Substrate characteristics, total organic carbon and metal contaminants (particularly Cu and Mg) also influenced the faunas of some samples. A series of partial CCAs show that of the measured variables, sedimentary phosphorus has the largest influence on assemblage distribution, explaining 6.98% (P < 0.002) of the total variance. A transfer function was developed for sedimentary phosphorus (Olsen P) using 58 samples from 15 of the studied lakes. The best performing model was based on weighted averaging with inverse deshrinking (WA Inv, r jack 2= 0.33, RMSEP = 102.65 ppm). This model was applied to a small modern thecamoebian dataset from a eutrophic lake in northern Ontario to predict phosphorus and performed satisfactorily. This preliminary study confirms that thecamoebians have considerable potential as quantitative water quality indicators in urbanising regions, particularly in areas influenced by nutrient inputs and road salts.
Resumo:
The synthesis of three new homoleptic trischelate ruthenium( II) complexes bearing new 2,2'-bipyridine ligands, 5,5'-dibenzylamido-2,2'-bipyridine (L1) and 5-benzylamido-2,2'- bipyridine (L2) has been achieved. In the case of [Ru(L2)(3)](2+), the mer and fac isomers have been separated. H-1 NMR spectroscopic anion binding studies indicate that the two C-3-symmetric pockets provided by [ Ru(L1)(3)](2+) is conducive to receive a range of anions, although this is not readily reflected in the photophysical behaviour. The fac-isomer of [Ru(L2)(3)](2+) does appear to have an enhancement in the binding interactions over the mer form with dihydrogenphosphate salts, although the difference is much less marked with the spherical chloride ions. From X-ray crystallographic evidence, the ability to hold water in the "anion" binding cleft can inhibit the strength of the interactions with anions, giving rise to the observed selectivity for directional oxoanions such as dihydrogen phosphate.
Resumo:
The influence of peripheral substitution on the physical properties of 1-alkyl-3-methylimidazolium based ionic liquids is described. Studies into the molecular structure of ionic liquids using X-ray crystallography, XAFS, recoil mass spectrometry and reflectivity measurements are described with particular reference to the interactions between ionic liquids and solutes; the example of an ionic liquid-organic co-crystal is given.
Resumo:
N-Alkyl-N-methylpyrrolidinium cations have been used for the design of ionic liquid crystals, including a new type of uranium-containing metallomesogen. Pyrrolidinium salts with bromide, bis(trifluoromethylsulfonyl)-imide, tetrafluoroborate, hexafluorophosphate, thiocyanate, tetrakis(2-thenoyltrifluoroacetonato)europate(III) and tetrabromouranyl] counteranions were prepared. For the bromide salts and tetrabromouranyl compounds, the chain length of the alkyl group CnH2n+1 was varied from eight to twenty carbon atoms (n =8. 10-20). The compounds show rich mesomorphic behaviour: highly ordered smectic phases (the crystal smectic E phase and the uncommon crystal smectic T phase), smectic A phases, and hexagonal. columnar phases were observed, depending on chain length and anion. This work gives better insight into the nature and formation of the crystal smectic T phase, and the Molecular requirements for the appearance of this highly ordered phase. This uncommon tetragonal mesophase is thoroughly discussed on the basis of detailed powder X-ray diffraction experiments and in relation to the existing literature. Structural models are proposed for self-assembly of the molecules within the smectic layers. In addition, the photophysical properties of the compounds containing a metal complex anion were investigated. For the uranium-containing mesogens, luminescence can be induced by dissolving them in an ionic: liquid matrix. The europium-containing compound shows intense red photoluminescence with high colour Purity.
Resumo:
Imidazo[4,5-f]-1,10-phenanthroline and pyrazino[2,3-f]-1,10-phenanthroline substituted with long alkyl chains are versatile ligands for the design of metallomesogens because of the ease of ligand substitution. Whereas the ligands and the corresponding rhenium(I) complexes were not liquid-crystalline, mesomorphism was observed for the corresponding ionic ruthenium(II) complexes with chloride, hexafluorophosphate, and bistriflimide counterions. The mesophases were identified as smectic A phases by high-temperature small-angle X-ray scattering (SAXS) using synchrotron radiation. The transition temperatures depend on the anion, the highest temperatures being observed for the chloride salts and the lowest for the bistriflimide salts. The ruthenium(II) complexes are examples of luminescent ionic liquid crystals.
Resumo:
New ionic liquid crystals (including ionic metallomesogens) based oil the pyrrolidinium core are presented. N-Methylpyrrolidine was quaternized with different mesogenic groups connected to a flexible, omega-bromosubstituted alkyl spacer. The length of the flexible alkyl spacer between the cationic head group and the rigid mesogenic group was varied. The substituted pyrrolidinium cations were combined with bromide, bis(trifluoromethylsulfonyl)imide, tetrakis (2-thenoyltrifluoroacetonato)europate(III), and tetrabromouranyl anions. The influence of the type of mesogenic unit, the lengths of the flexible spacer and terminal alkyl chain, the size of the mesogenic group, and the type of anion oil the thermotropic mesomorphic behavior was investigated. Furthermore, the phase behavior was thoroughly compared with the previously reported mesomorphism of N-alkyl-N-methylpyrrolidinium salts. Low-ordered smectic A phases of the de Vries type, smectic C phases, higher-ordered smectic F/I phases, as well its crystal smectic phases (E and G, J, H, or K) were observed and investigated by polarizing optical microscopy, differential scanning calorimetry, and powder X-ray diffraction.
Resumo:
Ionic liquids are organic salts with low melting points. Many of these compounds are liquid at room temperature in their pure state. Since they have negligible vapor pressure and would not contribute to air pollution, they are being intensively investigated for a variety of applications, including as solvents for reactions and separations, as non-volatile electrolytes, and as heat transfer fluids. We present melting temperatures, glass transition temperatures, decomposition temperatures, heat capacities, and viscosities for a large series of pyridinium-based ionic liquids. For comparison, we include data for several imidazolium and quaternary ammonium salts. Many of the compounds do not crystallize, but form glasses at temperatures between 188 K and 223 K. The thermal stability is largely determined by the coordinating ability of the anion, with ionic liquids made with the least coordinating anions, like bis(trifluoromethylsulfonyl)imide, having the best thermal stability. In particular, dimethylaminopyridinium bis(trifluoromethylsulfonyl)imide salts have some of the best thermal stabilities of any ionic liquid compounds investigated to date. Heat capacities increase approximately linearly with increasing molar mass, which corresponds with increasing numbers of translational, vibrational, and rotational modes. Viscosities generally increase with increasing number and length of alkyl substituents on the cation, with the pyridinium salts typically being slightly more viscous than the equivalent imidazolium compounds. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The first step of the mineralisation of fosfomycin by R. huakuii PMY1 is hydrolytic ring opening with the formation of (1R, 2R)-1,2-dihydroxypropylphosphonic acid. This phosphonic acid and its three stereoisomers were synthesised by chemical means and tested as their ammonium salts for mineralisation as evidenced by release of P-i. Only the (1R, 2R)-isomer was degraded. A number of salts of phosphonic acids such as (+/-)-1,2-epoxybutyl-, (+/-)-1,2-dihydroxyethyl-, 2-oxopropyl-, (+/-)-2-hydroxypropyl-, (+/-)-1-hydroxypropyl- and (+/-)-1-hydroxy-2-oxopropylphosphonic acid were synthesised chemically, but none supported growth. In vitro C-P bond cleavage activity was however detected with the last phosphonic acid. A mechanism involving phosphite had to be discarded as it could not be used as a phosphorus source. R. huakuii PMY1 grew well on (R)- and ( S)- lactic acid and hydroxyacetone, but less well on propionic acid and not on acetone or (R)- and (+/-)-1,2-propanediol. The Pi released from (1R, 2R)-1,2-dihydroxypropylphosphonic acid labelled with one oxygen-18 in the PO3H2 group did not stay long enough in the cells to allow complete exchange of O-18 for O-16 by enzymic turnover.
Intracellular accumulation of polyphosphate by the yeast Candida humicola G-1 in response to acid pH
Resumo:
Cells of a newly isolated environmental strain of Candida humicola accumulated 10-fold more polyphosphate (polyP), during active growth, when grown in complete glucose-mineral salts medium at pH 5.5 than when grown at pH 7.5. Neither phosphate starvation, nutrient limitation, nor anaerobiosis was required to induce polyP formation. An increase in intracellular polyP was accompanied by a 4.5-fold increase in phosphate uptake from the medium and sixfold-higher levels of cellular polyphosphate kinase activity. This novel accumulation of polyP by C. humicola G-1 in response to acid pH provides further evidence as to the importance of polyP in the physiological adaptation of microbial cells during growth and development and in their response to environmental stresses.
Resumo:
Many neuropeptides are similar in size, amino acid composition and charge to antimicrobial peptides. This study aimed to determine whether the neuropeptides substance P (SP), neurokinin A (NKA), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), displayed antimicrobial activity against Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. SP, NPY, VIP and CGRP displayed variable degrees of antimicrobial activity against all the pathogens tested with the exception of S. aureus. These antimicrobial activities add a further dimension to the immunomodulatory roles for neuropeptides in the inflammatory and immune responses. (c) 2008 Elsevier B.V. All rights reserved.