888 resultados para Diametral tensile strength


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research activities were focused on evaluating the effect of Mo addition to mechanical properties and microstructure of A354 aluminium casting alloy. Samples, with increasing amount of Mo, were produced and heat treated. After heat treatment and exposition to high temperatures samples underwent microstructural and chemical analyses, hardness and tensile tests. The collected data led to the optimization of both casting parameters, for obtaining a homogeneous Mo distribution in the alloy, and heat treatment parameters, allowing the formation of Mo based strengthening precipitates stable at high temperature. Microstructural and chemical analyses highlighted how Mo addition in percentage superior to 0.1% wt. can modify the silicon eutectic morphology and hinder the formation of iron based β intermetallics. High temperature exposure curves, instead, showed that after long exposition hardness is slightly influenced by heat treatment while the effect of Mo addition superior to 0,3% is negligible. Tensile tests confirmed that the addition of 0.3%wt Mo induces an increase of about 10% of ultimate tensile strength after high temperature exposition (250°C for 100h) while heat treatments have slight influence on mechanical behaviour. These results could be exploited for developing innovative heat treatment sequence able to reduce residual stresses in castings produced with A354 modified with Mo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laser tissue soldering (LTS) is a promising technique for tissue fusion but is limited by the lack of reproducibility particularly when the amount of indocyanine green (ICG) applied as energy absorber cannot be controlled during the soldering procedure. Nanotechnology enables the control over the quantitative binding of the ICG. The aim of this study was to establish a highly reproducible and strong tissue fusion using ICG packed nanoshells. By including the chromophore in the soldering scaffold, dilution of the energy absorber during the soldering procedure is prevented. The feasibility of this novel nanoshell soldering technique was studied by assessing the local heating of the area and tensile strength of the resulting fused tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microsurgical suturing is the standard for cerebral bypass surgery, a technique where temporary occlusion is usually necessary. Non-occlusive techniques such as excimer laser-assisted non-occlusive anastomosis (ELANA) have certainly widened the spectrum of treatment of complex cerebrovascular situations, such as giant cerebral aneurysms, that were otherwise non-treatable. Nevertheless, the reduction of surgical risks while widening the spectrum of indications, such as a prophylactic cerebral bypass, is still a main aim, that we would like to pursue with our sutureless tissue fusion research. The primary concern in sutureless tissue fusion- and especially in tissue fusion of cerebral vessels- is the lack of reproducibility, often caused by variations in the thermal damage of the vessel. This has prevented this novel fusion technique from being applicable in daily surgical use. In this overview, we present three ways to further improve the laser tissue soldering technique.In the first section entitled "Laser Tissue Soldering Using a Biodegradable Polymer," a porous polymer scaffold doped with albumin (BSA) and indocyanine green (ICG) is presented, leading to strong and reproducible tensile strengths in tissue soldering. Histologies and future developments are discussed.In the section "Numerical Simulation for Improvement of Laser Tissue Soldering," a powerful theoretical simulation model is used to calculate temperature distribution during soldering. The goal of this research is to have a tool in hand that allows us to determine laser irradiation parameters that guarantee strong vessel fusion without thermally damaging the inner structures such as the intima and endothelium.In a third section, "Nanoparticles in Laser Tissue Soldering," we demonstrate that nanoparticles can be used to produce a stable and well-defined spatial absorption profile in the scaffold, which is an important step towards increasing the reproducibility. The risks of implanting nanoparticles into a biodegradable scaffold are discussed.Step by step, these developments in sutureless tissue fusion have improved the tensile strength and the reproducibility, and are constantly evolving towards a clinically applicable anastomosis technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laser tissue welding and soldering is being increasingly used in the clinical setting for defined surgical procedures. The exact induced changes responsible for tensile strength are not yet fully investigated. To further improve the strength of the bonding, a better understanding of the laser impact at the subcellular level is necessary. The goal of this study was to analyze whether the effect of laser irradiation on covalent bonding in pure collagen using irradiances typically applied for tissue soldering. Pure rabbit and equine type I collagen were subjected to laser irradiation. In the first part of the study, rabbit and equine collagen were compared using identical laser and irradiation settings. In the second part of the study, equine collagen was irradiated at increasing laser powers. Changes in covalent bonding were studied indirectly using the sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Tensile strengths of soldered membranes were measured with a calibrated tensile force gauge. In the first experiment, no differences between the species-specific collagen bands were noted, and no changes in banding were found on SDS-PAGE after laser irradiation. In the second experiment, increasing laser irradiation power showed no effect on collagen banding in SDS-PAGE. Finally, the laser tissue soldering of pure collagen membranes showed virtually no determinable tensile strength. Laser irradiation of pure collagen at typical power settings and exposure times generally used in laser tissue soldering does not induce covalent bonding between collagen molecules. This is true for both rabbit and equine collagen proveniences. Furthermore, soldering of pure collagen membranes without additional cellular components does not achieve the typical tensile strength reported in native, cell-rich tissues. This study is a first step in a better understanding of laser impact at the molecular level and might prove useful in engineering of combined collagen-soldering matrix membranes for special laser soldering applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: In this in vitro feasibility study we analyzed tissue fusion using bovine serum albumin (BSA) and Indocyanine green (ICG) doped polycaprolactone (PCL) scaffolds in combination with a diode laser as energy source while focusing on the influence of irradiation power and albumin concentration on the resulting tensile strength and induced tissue damage. MATERIALS AND METHODS: A porous PCL scaffold doped with either 25% or 40% (w/w) of BSA in combination with 0.1% (w/w) ICG was used to fuse rabbit aortas. Soldering energy was delivered through the vessel from the endoluminal side using a continuous wave diode laser at 808 nm via a 400 microm core fiber. Scaffold surface temperatures were analyzed with an infrared camera. Optimum parameters such as irradiation time, radiation power and temperature were determined in view of maximum tensile strength but simultaneously minimum thermally induced tissue damage. Differential scanning calorimetry (DSC) was performed to measure the influence of PCL on the denaturation temperature of BSA. RESULTS: Optimum parameter settings were found to be 60 seconds irradiation time and 1.5 W irradiation power resulting in tensile strengths of around 2,000 mN. Corresponding scaffold surface temperature was 117.4+/- 12 degrees C. Comparison of the two BSA concentration revealed that 40% BSA scaffold resulted in significant higher tensile strength compared to the 25%. At optimum parameter settings, thermal damage was restricted to the adventitia and its interface with the outermost layer of the tunica media. The DSC showed two endothermic peaks in BSA containing samples, both strongly depending on the water content and the presence of PCL and/or ICG. CONCLUSIONS: Diode laser soldering of vascular tissue using BSA-ICG-PCL-scaffolds leads to strong and reproducible tissue bonds, with vessel damage limited to the adventitia. Higher BSA content results in higher tensile strengths. The DSC-measurements showed that BSA denaturation temperature is lowered by addition of water and/or ICG-PCL.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rehabilitation of concrete structures, especially concrete bridge decks, is a major challenge for transportation agencies in the United States. Often, the most appropriate strategy to preserve or rehabilitate these structures is to provide some form of a protective coating or barrier. These surface treatments have typically been some form of polymer, asphalt, or low-permeability concrete, but the application of UHPC has shown promise for this application mainly due to its negligible permeability, but also as a result of its excellent mechanical properties, self-consolidating nature, rapid gain strength, and minimal creep and shrinkage characteristics. However, for widespread acceptance, durability and performance of the composite system must be fully understood, specifically the bond between UHPC and NSC often used in bridge decks. It is essential that the bond offers enough strength to resist the stress due to mechanical loading or thermal effects, while also maintaining an extended service-life performance. This report attempts to assess the bond strength between UHPC and NSC under different loading configurations. Different variables, such as roughness degree of the concrete substrates, age of bond, exposure to freeze-thaw cycles and wetting conditions of the concrete substrate, were included in this study. The combination of splitting tensile test with 0, 300, 600 and 900 freeze-thaw cycles was carried out to assess the bond performance under severe ambient conditions. The slant-shear test was utilized with different interface angles to provide a wide understanding of the bond performance under different combinations of compression and shear stresses. The pull-off test is the most accepted method to evaluate the bond strength in the field. This test which studies the direct tensile strength of the bond, the most severe loading condition, was used to provide data that can be correlated with the other tests that only can be used in the laboratory. The experimental program showed that the bond performance between UHPC and NSC is successful, as the strength regardless the different degree of roughness of the concrete substrate, the age of the composite specimens, the exposure to freeze-thaw cycles and the different loading configurations, is greater than that of concrete substrate and largely satisfies with ACI 546.3R-06.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hooked reinforcing bars (rebar) are used frequently to carry the tension forces developed in beams and transferred to columns. Research into epoxy coated hooked bars has only been minimally performed and no research has been carried out incorporating the coating process found in ASTM A934. This research program compares hooked rebar that are uncoated, coated by ASTM A775, and coated by ASTM A934. In total, forty-two full size beam-column specimens were created, instrumented and tested to failure. The program was carried out in three phases. The first phase was used to refine the test setup and procedures. Phase two explored the spacing of column ties within the joint region. Phase three explored the three coating types found above. Each specimen included two hooked rebar which were loaded and measured independently for relative rebar slip. The load and displacement of the hooked rebar were analyzed, focusing on behavior at the levels of 30 ksi, 42 ksi and 60 ksi of rebar stress. Statistical and general comparisons were made using the coating types, tie spacing, and rebar stress level. Many of the parameters composing the rebar and concrete were also tested to characterize the components and specimens. All rebar tested met ASTM standards for tensile strength, but the newer ASTM A934 method seemed to produce slightly lower yield strengths. The A934 method also produced coating thicknesses that were very inconsistent and were higher than ASTM maximum limits in many locations. Continuity of coating surfaces was found to be less than 100% for both A775 and A934 rebar, but for different reasons. The many comparisons made did not always produce clear conclusions. The data suggests that the ACI Code (318-05) parameter of 1.2 for including epoxy coating on hooked rebar may need to be raised, possibly to 2.5, but more testing needs to be performed before such a large value change is set forth. This is particularly important as variables were identified which may have a larger influence on rebar capacity than the Development Length, of which the current 1.2 factor modifies. Many suggestions for future work are included throughout the thesis to help guide other researchers in carrying out successful and productive programs which will further the highly understudied topic of hooked rebar.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the increasing importance of conserving natural resources and moving toward sustainable practices, the aging transportation infrastructure can benefit from these ideas by improving their existing recycling practices. When an asphalt pavement needs to be replaced, the existing pavement is removed and ground up. This ground material, known as reclaimed asphalt pavement (RAP), is then added into new asphalt roads. However, since RAP was exposed to years of ultraviolet degradation and environmental weathering, the material has aged and cannot be used as a direct substitute for aggregate and binder in new asphalt pavements. One material that holds potential for restoring the aged asphalt binder to a usable state is waste engine oil. This research aims to study the feasibility of using waste engine oil as a recycling agent to improve the recyclability of pavements containing RAP. Testing was conducted in three phases, asphalt binder testing, advanced asphalt binder testing, and laboratory mixture testing. Asphalt binder testing consisted of dynamic shear rheometer and rotational viscometer testing on both unaged and aged binders containing waste engine oil and reclaimed asphalt binder (RAB). Fourier Transform Infrared Spectroscopy (FTIR) testing was carried out to on the asphalt binders blended with RAB and waste engine oil compare the structural indices indicative of aging. Lastly, sample asphalt samples containing waste engine oil and RAP were subjected to rutting testing and tensile strength ratio testing. These tests lend evidence to support the claim that waste engine oil can be used as a rejuvenating agent to chemically restore asphalt pavements containing RAP. Waste engine oil can reduce the stiffness and improve the low temperature properties of asphalt binders blended with RAB. Waste engine oil can also soften asphalt pavements without having a detrimental effect on the moisture susceptibility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of Si and cooling rate are investigated for their effect on the mechanical properties and microstructure. Three alloys were chosen with varying C and Si contents and an attempt to keep the remainder of the elements present constant. Within each heat, three test blocks were poured. Two blocks had chills – one with a fluid flowing through it to cool it (active chill) and one without the fluid (passive) – and the third block did not have a chill. Cooling curves were gathered and analyzed. The mechanical properties of the castings were correlated to the microstructure, cooling rate and Si content of each block. It was found that an increase in Si content increased the yield stress, tensile strength and hardness but decreased the impact toughness, elongation and Young’s modulus. The fast cooling rates produced by the chills caused a high nodule count in the castings along with a fine ferrite grain size and a high degree of nodularity. The fine microstructures, in turn, increased the strength and ductile to brittle transition temperature (DBTT) of the castings. The fast cooling rate was not adequate to overcome the dramatic increase in DBTT that is caused by the addition of Si.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of aluminum alloys containing additions of scandium, zirconium, and ytterbium were cast to evaluate the effect of partial ytterbium substitution for scandium on tensile behavior. Due to the high price of scandium, a crucible-melt interaction study was performed to ensure no scandium was lost in graphite, alumina, magnesia, or zirconia crucibles after holding a liquid Al-Sc master alloy for 8 hours at 900 °C in an argon atmosphere. The alloys were subjected to an isochronal aging treatment and tested for conductivity and Vickers microhardness after each increment. For scandium-containing alloys, peak hardnesses of 520-790 MPa, and peak tensile stresses of 138-234 MPa were observed after aging from 150-350 °C for 3 hours in increments of 50 °C, and for alloys without scandium, peak hardnesses of 217-335 MPa and peak tensile stresses of 45-63 MPa were observed after a 3 hour, 150 °C aging treatment. The hardness and tensile strength of the ytterbium containing alloy was found to be lower than in the alloy with no ytterbium substitution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The complexity and challenge created by asphalt material motivates researchers and engineers to investigate the behavior of this material to develop a better understanding, and improve the performance of asphalt pavement. Over decades, a wide range of modification at macro, meso, micro and nano scales have been conducted to improve the performance of asphalt pavement. This study was initiated to utilize the newly developed asphalt modifier pellets. These pellets consisted of different combinations of calcium carbonate (CaCO3), linear low-density polyethylene (LLDPE) and titanate coupling agent (CA) to improve the asphalt binder as well as pavement performance across a wide range of temperature and loading pace. These materials were used due to their unique characteristics and promising findings from various industries, especially as modifiers in pavement material. The challenge is to make sure the CaCO3 disperses very well in the mixture. The rheological properties of neat asphalt binder PG58-28 and modified asphalt binder (PG58-28/LLDPE, PG58-28/CaCO3, PG58-28/CaCO3/LLDPE, and PG58-28/CaCO3/LLDPE/CA), were determined using rotational viscometer (RV) test, dynamic shear rheometer (DSR) test and bending beam rheometer test. In the DSR test, the specimens were evaluated using frequency sweep and multiple shear creep recovery (MSCR). The asphalt mixtures (aggregate/PG58-28, aggregate/ PG58-28/LLDPE, aggregate/PG58-28/CaCO3, aggregate/PG58-28/LLDPE/CaCO3 and aggregate/PG58-28/LLDPE/CaCO3/CA) were evaluated using the four point beam fatigue test, the dynamic modulus (E*) test, and tensile strength test (to determines tensile strength ratio, TSR). The RV test results show that all modified asphalt binders have a higher viscosity compared to the neat asphalt binder (PG58-28). Based on the Jnr results (using MSCR test), all the modified asphalt binders have a better resistance to rutting compared to the neat asphalt binder. A higher modifier contents have resulted in a better recovery percentage of asphalt binder (higher resistance to rutting), except the specimens prepared using PECC’s modified asphalt binder (PG58-28/CaCO3/LLDPE). The BBR test results show that all the modified asphalt binders have shown comparable performance in term of resistance to low temperature cracking, except the specimen prepared using the LLDPE modifier. Overall, 5 wt% LLDPE modified asphalt binder was found to be the best asphalt binder in terms of resistance to rutting. Meanwhile, 3 wt% PECC-1CA’s modified asphalt binder can be considered as the best (in terms of resistance to thermal cracking) with the lowest mean critical cracking temperature. The appearance of CaCO3 was found useful merely in improving the resistance to fatigue cracking of asphalt mixture. However, application of LLDPE has undermined the fatigue life of asphalt mixtures. Adding LLDPE and coupling agent throughout this study does not sufficiently help in terms of elastic behavior which essential to enhance the resistance to fatigue cracking. In contrast, application of LLDPE has increased the indirect tensile strength values and TSR of asphalt mixtures, indicates a better resistance to moisture damage. The usage of the coupling agent does not change the behavior of the asphalt mixture, which could be due to imbalance effects resulted by combination of LLDPE and CaCO3 in asphalt binder. Further investigations without incorporating CaCO3 should be conducted further. To investigate the feasibility of using LLDPE and coupling agent as modifiers in asphalt pavements, more research should be conducted on different percentages of LLDPE (less than 3 wt%), and at the higher and w wider range of coupling agent content, from 3 wt% to 7 wt% based on the polymer mass.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of zinc as a structural metal has been militated against by two of its properties, namely, its low tensile strength and its susceptibility to grain growth. The importance of these factors can be appreciated when it is realized that the tensile strength of coarsely crystalline cast zinc is 4,000 pounds per square inch, while finely crystalline cast zinc has a tensile strength of 12,000 pounds per square inch.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tin alloys of tellurium are extremely hard and have very great tensile strength. It was thought that the reduction of the rate of grain growth of tin with the addition of tellurium accompanied this hardening and strengthening and such way found to be true.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In dem Artikel wird eine Versuchsreihe vorgestellt und ausgewertet, die zur Ermittlung orientungsabhängiger mechanisch-technologischer Eigenschaften von generativ gefertigten Bauteilen, am Institut für Konstruktionstechnik, durchgeführt wurde. Es wird gezeigt, dass Zugfestigkeit und Bruchdehnung deutlich unter denen des Ausgangsmaterials liegen und sehr stark von der Orientierung des Bauteils abhängen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Es sollen hochfeste, gewichtreduzierte Zug- und Tragmittel aus hochmodularen (HM) und hochfesten (HT) Fasern validiert und dabei sowohl runde als auch flache, riemenartige Strukturen untersucht werden. Dadurch sind effizientere Fördersysteme und die Überwindung technischer Grenzen möglich. Darüber hinaus soll das Hauptkriterium für ein breites Anwendungsspektrum geschaffen werden: ein anerkanntes, zerstörungsfreies Prüfverfahren, mit dem der Austausch- bzw. Wartungszeitpunkt des textilen Tragmittels bestimmt werden kann. Können die o. g. Punkte erfolgreich bearbeitet werden, erfolgt eine Ausdehnung der textilen Strukturen in den Bereich kraftübertragender Maschinenelemente. Anhand von Feldversuchen in fördertechnischen Anlagen im Bergbau/ Intralogistik soll erstmals der vollständige Nachweis geführt werden, dass derartige textile Strukturen in technischen Anwendungen eingesetzt werden können. Der Nachweis umfasst die Validierung einer Vielzahl von Einzelschwerpunkten wie die Entwicklung einer Endlos-Herstellungstechnologie bzw. Endverbindung, die Tragmitteldimensionierung, die Erbringung von Festigkeitsnachweisen, die Erarbeitung von Vorschriften und die Erprobung der Verfahren zur Zustandsüberwachung.