885 resultados para Deep sequencing
Resumo:
Place-names are a fundamental concept in all academic collections: everything happens somewhere. Contemporary place-names are comprehensively represented in digital gazetteer and geospatial web services such as GeoNames. However, despite millions of pounds of investment by JISC and other agencies in historical online resources in recent years, there is currently no equivalent for historic place-names. This project will digitize the entire 86 volume corpus of the Survey of English Place-Names (SEPN), the ultimate authority on historic place-names in England, and make its 4 million forms available.
Resumo:
Purpose: To evaluate by ultrasound biomicroscopy (UBM) the anatomical characteristics and the intraocular pressure (IOP) lowering mechanisms of deep sclerectomy after long-term follow-up. Methods: In all, 22 eyes of 21 consecutive patients who had deep sclerectomy were examined by UBM. Several UBM variables were prospectively evaluated, including the presence and maximum length and height of the intrascleral space, the minimum thickness of residual trabeculo-Descemet membrane (TDM), the presence and type of subconjunctival filtering bleb, and the presence of other possible drainage sites, for example suprachoroidal. Surgical success was considered to be achieved when the IOP was
Resumo:
Aim: To study the long-term outcome of deep sclerectomy in patients with open angle glaucoma. Methods: Prospective consecutive series of 43 eyes (38 patients) with medically uncontrolled open-angle glaucoma undergoing deep sclerectomy. All patients underwent clinical assessment before and after surgery at day 7 and at months 1, 3, 6, 12, 18, 24, 36. Surgical success was considered if the patient's intraocular pressure (IOP)>22 mmHg and the IOP was lowered by more than 20% without the use of any medication. Kaplan-Meier survival curves were used to evaluate the success rate. Results: The mean follow-up time was 28.1±8.2 months. Mean IOP decreased significantly from a preoperative value of 24.6±5.5 mmHg to a postoperative value of 18.5±4.6 mmHg at 36 months (P>0.001). Microperforation of TDM occurred in three cases (7.0%) and ciliary body prolapse in one case (2.3%) but did not prevent completion of the operation. Postoperatively, hyphaema was detected in one case and shallow anterior chamber in another case and both were treated conservatively. Bleb encapsulation with elevation of IOP occurred in two cases (4.7%) and was treated with 5-fluorouracil subconjunctival injection. Goniopuncture with neodymium : YAG laser was performed in two cases (4.7%). There were no other late complications with the exception of failure of the operation. On the life-table analysis the success rate at 12, 24, and 30 months were 61.4, 36.6, and 18.9%, respectively. Conclusion: Deep sclerectomy reduced the IOP temporarily while minimising the risk of postoperative complications commonly encountered with standard trabeculectomy. However, after long-term follow-up surgery failed to maintain a low IOP. © 2006 Nature Publishing Group. All rights reserved.
Resumo:
Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from -60°C to 280°C, low vapor pressure, and high ionic conductivity up to 28.4mScm at 150°C and at x=1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius' Law and Vogel-Tamman-Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability. © 2013 Elsevier Ltd.
Resumo:
Matching query interfaces is a crucial step in data integration across multiple Web databases. The problem is closely related to schema matching that typically exploits different features of schemas. Relying on a particular feature of schemas is not suffcient. We propose an evidential approach to combining multiple matchers using Dempster-Shafer theory of evidence. First, our approach views the match results of an individual matcher as a source of evidence that provides a level of confidence on the validity of each candidate attribute correspondence. Second, it combines multiple sources of evidence to get a combined mass function that represents the overall level of confidence, taking into account the match results of different matchers. Our combination mechanism does not require use of weighing parameters, hence no setting and tuning of them is needed. Third, it selects the top k attribute correspondences of each source attribute from the target schema based on the combined mass function. Finally it uses some heuristics to resolve any conflicts between the attribute correspondences of different source attributes. Our experimental results show that our approach is highly accurate and effective.
Resumo:
The advent of next generation sequencing technologies (NGS) has expanded the area of genomic research, offering high coverage and increased sensitivity over older microarray platforms. Although the current cost of next generation sequencing is still exceeding that of microarray approaches, the rapid advances in NGS will likely make it the platform of choice for future research in differential gene expression. Connectivity mapping is a procedure for examining the connections among diseases, genes and drugs by differential gene expression initially based on microarray technology, with which a large collection of compound-induced reference gene expression profiles have been accumulated. In this work, we aim to test the feasibility of incorporating NGS RNA-Seq data into the current connectivity mapping framework by utilizing the microarray based reference profiles and the construction of a differentially expressed gene signature from a NGS dataset. This would allow for the establishment of connections between the NGS gene signature and those microarray reference profiles, alleviating the associated incurring cost of re-creating drug profiles with NGS technology. We examined the connectivity mapping approach on a publicly available NGS dataset with androgen stimulation of LNCaP cells in order to extract candidate compounds that could inhibit the proliferative phenotype of LNCaP cells and to elucidate their potential in a laboratory setting. In addition, we also analyzed an independent microarray dataset of similar experimental settings. We found a high level of concordance between the top compounds identified using the gene signatures from the two datasets. The nicotine derivative cotinine was returned as the top candidate among the overlapping compounds with potential to suppress this proliferative phenotype. Subsequent lab experiments validated this connectivity mapping hit, showing that cotinine inhibits cell proliferation in an androgen dependent manner. Thus the results in this study suggest a promising prospect of integrating NGS data with connectivity mapping. © 2013 McArt et al.
Resumo:
Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.
Resumo:
Web sites that rely on databases for their content are now ubiquitous. Query result pages are dynamically generated from these databases in response to user-submitted queries. Automatically extracting structured data from query result pages is a challenging problem, as the structure of the data is not explicitly represented. While humans have shown good intuition in visually understanding data records on a query result page as displayed by a web browser, no existing approach to data record extraction has made full use of this intuition. We propose a novel approach, in which we make use of the common sources of evidence that humans use to understand data records on a displayed query result page. These include structural regularity, and visual and content similarity between data records displayed on a query result page. Based on these observations we propose new techniques that can identify each data record individually, while ignoring noise items, such as navigation bars and adverts. We have implemented these techniques in a software prototype, rExtractor, and tested it using two datasets. Our experimental results show that our approach achieves significantly higher accuracy than previous approaches. Furthermore, it establishes the case for use of vision-based algorithms in the context of data extraction from web sites.
Resumo:
Molluscs are a diverse animal phylum with a formidable fossil record. Although there is little doubt about the monophyly of the eight extant classes, relationships between these groups are controversial.We analysed a comprehensive multilocus molecular data set for molluscs, the first to include multiple species from all classes, including five monoplacophorans in both extant families. Our analyses of fivemarkers resolve two major clades: the first includes gastropods and bivalves sister to Serialia (monoplacophorans and chitons), and the second comprises scaphopods sister to aplacophorans and cephalopods. Traditional groupings such as Testaria, Aculifera, and Conchifera are rejected by our data with significant Approximately Unbiased (AU) test values. A new molecular clock indicates that molluscs had a terminal Precambrian origin with rapid divergence of all eight extant classes in the Cambrian. Therecovery of Serialia as a derived, Late Cambrian clade is potentially in line with the stratigraphic chronology of morphologically heterogeneous early mollusc fossils. Serialia is in conflict with traditional molluscan classifications and recent phylogenomic data. Yet our hypothesis, as others from molecular data, implies frequent molluscan shell and body transformations by heterochronic shifts in development and multiple convergent adaptations, leading to the variable shells and body plans in extant lineages.
Resumo:
Retinitis pigmentosa (RP) is a devastating form of retinal degeneration, with significant social and professional consequences. Molecular genetic information is invaluable for an accurate clinical diagnosis of RP due to its high genetic and clinical heterogeneity. Using a gene capture panel that covers 163 of the currently known retinal disease genes, including 48 RP genes, we performed a comprehensive molecular screening in a collection of 123 RP unsettled probands from a wide variety of ethnic backgrounds, including 113 unrelated simplex and 10 autosomal recessive RP (arRP) cases. As a result, 61 mutations were identified in 45 probands, including 38 novel pathogenic alleles. Interestingly, we observed that phenotype and genotype were not in full agreement in 21 probands. Among them, eight probands were clinically reassessed, resulting in refinement of clinical diagnoses for six of these patients. Finally, recessive mutations in CLN3 were identified in five retinal degeneration patients, including four RP probands and one cone-rod dystrophy patient, suggesting that CLN3 is a novel non-syndromic retinal disease gene. Collectively, our results underscore that, due to the high molecular and clinical heterogeneity of RP, comprehensive screening of all retinal disease genes is effective in identifying novel pathogenic mutations and provides an opportunity to discover new genotype-phenotype correlations. Information gained from this genetic screening will directly aid in patient diagnosis, prognosis, and treatment, as well as allowing appropriate family planning and counseling.
Resumo:
In this work, we present a study on the physical and electrochemical properties of three new Deep Eutectic Solvents (DESs) based on N-methylacetamide (MAc) and a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF; or nitrate, NO). Based on DSC measurements, it appears that these systems are liquid at room temperature for a lithium salt mole fraction ranging from 0.10 to 0.35. The temperature dependences of the ionic conductivity and the viscosity of these DESs are correctly described by using the Vogel-Tammann-Fulcher (VTF) type fitting equation, due to the strong interactions between Li, X and MAc in solution. Furthermore, these electrolytes possess quite large electrochemical stability windows up to 4.7-5 V on Pt, and demonstrate also a passivating behavior toward the aluminum collector at room temperature. Based on these interesting electrochemical properties, these selected DESs can be classified as potential and promising electrolytes for lithium-ion batteries (LIBs). For this purpose, a test cell was then constructed and tested at 25 °C, 60 °C and 80 °C by using each selected DES as an electrolyte and LiFePO (LFP) material as a cathode. The results show a good compatibility between each DES and LFP electrode material. A capacity of up to 160 mA h g with a good efficiency (99%) is observed in the DES based on the LiNO salt at 60 °C despite the presence of residual water in the electrolyte. Finally preliminary tests using a LFP/DES/LTO (lithium titanate) full cell at room temperature clearly show that LiTFSI-based DES can be successfully introduced into LIBs. Considering the beneficial properties, especially, the cost of these electrolytes, such introduction could represent an important contribution for the realization of safer and environmentally friendly LIBs. © 2013 the Owner Societies.
Resumo:
Langer's axillary arch is a recognized muscular anomaly characterized by an accessory muscular band crossing the axilla that rarely causes symptoms. We describe a patient who presented with an upper limb deep vein thrombosis caused by this aberrant muscle, which we believe is the first reported case. Axillary surgery with division of the aberrant muscle relieved upper limb venous obstruction in this patient. (J Vase Surg 2012;55:234-6.)