811 resultados para Data-driven analysis
Resumo:
Pullpipelining, a pipeline technique where data is pulled from successor stages from predecessor stages is proposed Control circuits using a synchronous, a semi-synchronous and an asynchronous approach are given. Simulation examples for a DLX generic RISC datapath show that common control pipeline circuit overhead is avoided using the proposal. Applications to linear systolic arrays in cases when computation is finished at early stages in the array are foreseen. This would allow run-time data-driven digital frequency modulation of synchronous pipelined designs. This has applications to implement algorithms exhibiting average-case processing time using a synchronous approach.
Resumo:
Supplier selection has a great impact on supply chain management. The quality of supplier selection also affects profitability of organisations which work in the supply chain. As suppliers can provide variety of services and customers demand higher quality of service provision, the organisation is facing challenges for making the right choice of supplier for the right needs. The existing methods for supplier selection, such as data envelopment analysis (DEA) and analytical hierarchy process (AHP) can automatically perform selection of competitive suppliers and further decide winning supplier(s). However, these methods are not capable of determining the right selection criteria which should be derived from the business strategy. An ontology model described in this paper integrates the strengths of DEA and AHP with new mechanisms which ensure the right supplier to be selected by the right criteria for the right customer's needs.
Resumo:
Analyzes the use of linear and neural network models for financial distress classification, with emphasis on the issues of input variable selection and model pruning. A data-driven method for selecting input variables (financial ratios, in this case) is proposed. A case study involving 60 British firms in the period 1997-2000 is used for illustration. It is shown that the use of the Optimal Brain Damage pruning technique can considerably improve the generalization ability of a neural model. Moreover, the set of financial ratios obtained with the proposed selection procedure is shown to be an appropriate alternative to the ratios usually employed by practitioners.
Resumo:
Hocaoglu MB, Gaffan EA, Ho AK. The Huntington's disease health-related quality of life questionnaire: a disease-specific measure of health-related quality of life. Huntington's disease (HD) is a genetic neurodegenerative disorder characterized by motor, cognitive and psychiatric disturbances, and yet there is no disease-specific patient-reported health-related quality of life outcome measure for patients. Our aim was to develop and validate such an instrument, i.e. the Huntington's Disease health-related Quality of Life questionnaire (HDQoL), to capture the true impact of living with this disease. Semi-structured interviews were conducted with the full spectrum of people living with HD, to form a pool of items, which were then examined in a larger sample prior to data-driven item reduction. We provide the statistical basis for the extraction of three different sets of scales from the HDQoL, and present validation and psychometric data on these scales using a sample of 152 participants living with HD. These new patient-derived scales provide promising patient-reported outcome measures for HD.
Resumo:
Practical applications of portfolio optimisation tend to proceed on a “top down” basis where funds are allocated first at asset class level (between, say, bonds, cash, equities and real estate) and then, progressively, at sub-class level (within property to sectors, office, retail, industrial for example). While there are organisational benefits from such an approach, it can potentially lead to sub-optimal allocations when compared to a “global” or “side-by-side” optimisation. This will occur where there are correlations between sub-classes across the asset divide that are masked in aggregation – between, for instance, City offices and the performance of financial services stocks. This paper explores such sub-class linkages using UK monthly stock and property data. Exploratory analysis using clustering procedures and factor analysis suggests that property performance and equity performance are distinctive: there is little persuasive evidence of contemporaneous or lagged sub-class linkages. Formal tests of the equivalence of optimised portfolios using top-down and global approaches failed to demonstrate significant differences, whether or not allocations were constrained. While the results may be a function of measurement of market returns, it is those returns that are used to assess fund performance. Accordingly, the treatment of real estate as a distinct asset class with diversification potential seems justified.
Resumo:
Canopy leaf area index (LAI), defined as the single-sided leaf area per unit ground area, is a quantitative measure of canopy foliar area. LAI is a controlling biophysical property of vegetation function, and quantifying LAI is thus vital for understanding energy, carbon and water fluxes between the land surface and the atmosphere. LAI is routinely available from Earth Observation (EO) instruments such as MODIS. However EO-derived estimates of LAI require validation before they are utilised by the ecosystem modelling community. Previous validation work on the MODIS collection 4 (c4) product suggested considerable error especially in forested biomes, and as a result significant modification of the MODIS LAI algorithm has been made for the most recent collection 5 (c5). As a result of these changes the current MODIS LAI product has not been widely validated. We present a validation of the MODIS c5 LAI product over a 121 km2 area of mixed coniferous forest in Oregon, USA, based on detailed ground measurements which we have upscaled using high resolution EO data. Our analysis suggests that c5 shows a much more realistic temporal LAI dynamic over c4 values for the site we examined. We find improved spatial consistency between the MODIS c5 LAI product and upscaled in situ measurements. However results also suggest that the c5 LAI product underestimates the upper range of upscaled in situ LAI measurements.
Resumo:
This contribution introduces a new digital predistorter to compensate serious distortions caused by memory high power amplifiers (HPAs) which exhibit output saturation characteristics. The proposed design is based on direct learning using a data-driven B-spline Wiener system modeling approach. The nonlinear HPA with memory is first identified based on the B-spline neural network model using the Gauss-Newton algorithm, which incorporates the efficient De Boor algorithm with both B-spline curve and first derivative recursions. The estimated Wiener HPA model is then used to design the Hammerstein predistorter. In particular, the inverse of the amplitude distortion of the HPA's static nonlinearity can be calculated effectively using the Newton-Raphson formula based on the inverse of De Boor algorithm. A major advantage of this approach is that both the Wiener HPA identification and the Hammerstein predistorter inverse can be achieved very efficiently and accurately. Simulation results obtained are presented to demonstrate the effectiveness of this novel digital predistorter design.
Resumo:
In this paper, various types of fault detection methods for fuel cells are compared. For example, those that use a model based approach or a data driven approach or a combination of the two. The potential advantages and drawbacks of each method are discussed and comparisons between methods are made. In particular, classification algorithms are investigated, which separate a data set into classes or clusters based on some prior knowledge or measure of similarity. In particular, the application of classification methods to vectors of reconstructed currents by magnetic tomography or to vectors of magnetic field measurements directly is explored. Bases are simulated using the finite integration technique (FIT) and regularization techniques are employed to overcome ill-posedness. Fisher's linear discriminant is used to illustrate these concepts. Numerical experiments show that the ill-posedness of the magnetic tomography problem is a part of the classification problem on magnetic field measurements as well. This is independent of the particular working mode of the cell but influenced by the type of faulty behavior that is studied. The numerical results demonstrate the ill-posedness by the exponential decay behavior of the singular values for three examples of fault classes.
Resumo:
This research has responded to the need for diagnostic reference tools explicitly linking the influence of environmental uncertainty and performance within the supply chain. Uncertainty is a key factor influencing performance and an important measure of the operating environment. We develop and demonstrate a novel reference methodology based on data envelopment analysis (DEA) for examining the performance of value streams within the supply chain with specific reference to the level of environmental uncertainty they face. In this paper, using real industrial data, 20 product supply value streams within the European automotive industry sector are evaluated. Two are found to be efficient. The peer reference groups for the underperforming value streams are identified and numerical improvement targets are derived. The paper demonstrates how DEA can be used to guide supply chain improvement efforts through role-model identification and target setting, in a way that recognises the multiple dimensions/outcomes of the supply chain process and the influence of its environmental conditions. We have facilitated the contextualisation of environmental uncertainty and its incorporation into a specific diagnostic reference tool.
Resumo:
We investigate the initialization of Northern-hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates significantly reduces assimilation error both in identical-twin experiments and when assimilating sea-ice observations, reducing the concentration error by a factor of four to six, and the thickness error by a factor of two. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that the strong dependence of thermodynamic ice growth on ice concentration necessitates an adjustment of mean ice thickness in the analysis update. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that proportional mean-thickness updates are superior to the other two methods considered and enable us to assimilate sea ice in a global climate model using simple Newtonian relaxation.
Resumo:
We investigate the initialisation of Northern Hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates leads to good assimilation performance for sea-ice concentration and thickness, both in identical-twin experiments and when assimilating sea-ice observations. The simulation of other Arctic surface fields in the coupled model is, however, not significantly improved by the assimilation. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that an adjustment of mean ice thickness in the analysis update is essential to arrive at plausible state estimates. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that assimilation with proportional mean-thickness updates outperforms the other two methods considered. The method described here is very simple to implement, and gives results that are sufficiently good to be used for initialising sea ice in a global climate model for seasonal to decadal predictions.
Resumo:
Sustainable Intensification (SI) of agriculture has recently received widespread political attention, in both the UK and internationally. The concept recognises the need to simultaneously raise yields, increase input use efficiency and reduce the negative environmental impacts of farming systems to secure future food production and to sustainably use the limited resources for agriculture. The objective of this paper is to outline a policy-making tool to assess SI at a farm level. Based on the method introduced by Kuosmanen and Kortelainen (2005), we use an adapted Data Envelopment Analysis (DEA) to consider the substitution possibilities between economic value and environmental pressures generated by farming systems in an aggregated index of Eco-Efficiency. Farm level data, specifically General Cropping Farms (GCFs) from the East Anglian River Basin Catchment (EARBC), UK were used as the basis for this analysis. The assignment of weights to environmental pressures through linear programming techniques, when optimising the relative Eco-Efficiency score, allows the identification of appropriate production technologies and practices (integrating pest management, conservation farming, precision agriculture, etc.) for each farm and therefore indicates specific improvements that can be undertaken towards SI. Results are used to suggest strategies for the integration of farming practices and environmental policies in the framework of SI of agriculture. Paths for improving the index of Eco-Efficiency and therefore reducing environmental pressures are also outlined.
Resumo:
In line with a growing interest in teacher research engagement in second language education, this article is an attempt to shed light on teachers’ views on the relationship between teaching and practice. The data comprise semi-structured interviews with 20 teachers in England, examining their views about the divide between research and practice in their field, the reasons for the persistence of the divide between the two and their suggestions on how to bridge it. Wenger’s (1998) Community of Practice (CoP) is used as a conceptual framework to analyse and interpret the data. The analysis indicates that teacher experience, learning and ownership of knowledge emerging from participation in their CoP are key players in teachers’ professional practice and in the development of teacher identity. The participants construe the divide in the light of the differences they perceive between teaching and research as two different CoPs, and attribute the divide to the limited mutual engagement, absence of a joint enterprise and lack of a shared repertoire between them. Boundary encounters, institutionalised brokering and a more research-oriented teacher education provision are some of the suggestions for bringing the two communities together.
Resumo:
Whereas there is substantial scholarship on formulaic language in L1 and L2 English, there is less research on formulaicity in other languages. The aim of this paper is to contribute to learner corpus research into formulaic language in native and non-native German. To this effect, a corpus of argumentative essays written by advanced British students of German (WHiG) was compared with a corpus of argumentative essays written by German native speakers (Falko-L1). A corpus-driven analysis reveals a larger number of 3-grams in WHiG than in Falko-L1, which suggests that British advanced learners of German are more likely to use formulaic language in argumentative writing than their native-speaker counterparts. Secondly, by classifying the formulaic sequences according to their functions, this study finds that native speakers of German prefer discourse-structuring devices to stance expressions, whilst British advanced learners display the opposite preferences. Thirdly, the results show that learners of German make greater use of macro-discourse-structuring devices and cautious language, whereas native speakers favour micro-discourse structuring devices and tend to use more direct language. This study increases our understanding of formulaic language typical of British advanced learners of German and reveals how diverging cultural paradigms can shape written native speaker and learner output.
Resumo:
The idea of Sustainable Intensification comes as a response to the challenge of avoiding resources such as land, water and energy being overexploited while increasing food production for an increasing demand from a growing global population. Sustainable Intensification means that farmers need to simultaneously increase yields and sustainably use limited natural resources, such as water. Within the agricultural sector water has a number of uses including irrigation, spraying, drinking for livestock and washing (vegetables, livestock buildings). In order to achieve Sustainable Intensification measures are needed that enable policy makers and managers to inform them about the relative performance of farms as well as of possible ways to improve such performance. We provide a benchmarking tool to assess water use (relative) efficiency at a farm level, suggest pathways to improve farm level productivity by identifying best practices for reducing excessive use of water for irrigation. Data Envelopment Analysis techniques including analysis of returns to scale were used to evaluate any excess in agricultural water use of 66 Horticulture Farms based on different River Basin Catchments across England. We found that farms in the sample can reduce on average water requirements by 35% to achieve the same output (Gross Margin) when compared to their peers on the frontier. In addition, 47% of the farms operate under increasing returns to scale, indicating that farms will need to develop economies of scale to achieve input cost savings. Regarding the adoption of specific water use efficiency management practices, we found that the use of a decision support tool, recycling water and the installation of trickle/drip/spray lines irrigation system has a positive impact on water use efficiency at a farm level whereas the use of other irrigation systems such as the overhead irrigation system was found to have a negative effect on water use efficiency.