666 resultados para Dams.


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Postmark dated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Postmark dated

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

postmark dated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

postmark dated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Submitted as part of U.S. Army Corps of Engineer [sic] Contract #DACW37-76-C-0057."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performed for the Western Energy and Land Use Team, Office of Biological Services, Fish and Wildlife Service, U. S. Dept. of the Interior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prepared by Rathbun Associates for the U.S. Army Corps of Engineers, Little Rock District.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"[Dams Branch] report no. DD-4."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this guide is to assist investigators conducting geologic hazard assessments with the understanding, detection, and characterization of surface features related to subsidence from underground coal mining. Subsidence related to underground coal mining can present serious problems to new and/or existing infrastructure, utilities, and facilities. For example, heavy equipment driving over the ground surface during construction processes may punch into voids created by sinkholes or cracks, resulting in injury to persons and property. Abandoned underground mines also may be full of water, and if punctured, can flood nearby areas. Furthermore, the integrity of rigid structures such as buildings, dams and bridges may be compromised if mining subsidence results in differential movement at the ground surface. Subsidence of the ground surface is a phenomenon associated with the removal of material at depth, and may occur coincident with mining, gradually over time, or sometimes suddenly, long after mining operations have ceased (Gray and Bruhn, 1984). The spatial limits of underground coal mines may extend for great distances beyond the surface operations of a mine, in some cases more than 10 miles for an individual mine. When conducting geologic hazard assessments, several remote investigation methods can be used to observe surface features related to underground mining subsidence. LiDAR-derived DEMs are generally the most useful method available for identifying these features because the bare earth surface can be viewed. However, due to limitations in the availability of LiDAR data, other methods often need to be considered when investigating surface features related to underground coal mining subsidence, such as Google Earth and aerial imagery. Mine maps, when available, can be viewed in tandem with these datasets, potentially improving the confidence of any possible mining subsidence-related features observed remotely. However, maps for both active and abandoned mines may be incomplete or unavailable. Therefore, it is important to be able to recognize possible surface features related to underground mining subsidence. This guide provides examples of surface subsidence features related to the two principal underground coal mining methods used in the United States: longwall mining and room and pillar mining. The depth and type of mining, geologic conditions, hydrologic conditions, and time are all factors that may influence the type of features that manifest at the surface. This guide provides investigators a basic understanding about the size, character and conditions of various surface features that occur as a result of underground mining subsidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Freshwater Bay (FWB), Washington did not undergo significant erosion of its shoreline after the construction of the Elwha and Glines Canyon Dams, unlike the shoreline east of Angeles Point (the Elwha River’s lobate delta). In this paper I compare the wave energy density in the western and eastern ends of the Strait of Juan de Fuca with the wave energy density at the Elwha River delta. This indicates seasonal high- and low-energy regimes in the energy density data. I group multi-year surveys of four cross-shore transects in FWB along this seasonal divide and search for seasonal trends in profile on the foreshore. After documenting changes in elevation at specific datums on the foreshore, I compare digital images of one datum to determine the particle sizes that are transported during deposition and scour events on this section of the FWB foreshore. Repeat surveys of four cross-shore transects over a five-year period indicate a highly mobile slope break between the upper foreshore and the low-tide delta. Post-2011, profiles in eastern FWB record deposition in the landward portion of the low-tide terrace and also in the upper intertidal. Western FWB experiences transient deposition on the low-tide terrace and high intra-annual variability in beach profile. Profile elevation at the slope break in western FWB can vary 0.5 m in the course of weeks. Changes in surface sediment that range from sand to cobble are co-incident with these changes in elevation. High sediment mobility and profile variation are inconsistent with shoreline stability and decreased sediment from the presumed source on the Elwha River delta.