778 resultados para DUBOIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Drug eluting stents with durable polymers may be associated with hypersensitivity, delayed healing, and incomplete endothelialization, which may contribute to late/very late stent thrombosis and the need for prolonged dual antiplatelet therapy. Bioabsorbable polymers may facilitate stent healing, thus enhancing clinical safety. The SYNERGY stent is a thin-strut, platinum chromium metal alloy platform with an ultrathin bioabsorbable Poly(D,L-lactide-co-glycolide) abluminal everolimus-eluting polymer. We performed a multicenter, randomized controlled trial for regulatory approval to determine noninferiority of the SYNERGY stent to the durable polymer PROMUS Element Plus everolimus-eluting stent. METHODS AND RESULTS Patients (n=1684) scheduled to undergo percutaneous coronary intervention for non-ST-segment-elevation acute coronary syndrome or stable coronary artery disease were randomized to receive either the SYNERGY stent or the PROMUS Element Plus stent. The primary end point of 12-month target lesion failure was observed in 6.7% of SYNERGY and 6.5% PROMUS Element Plus treated subjects by intention-to-treat (P=0.83 for difference; P=0.0005 for noninferiority), and 6.4% in both the groups by per-protocol analysis (P=0.0003 for noninferiority). Clinically indicated revascularization of the target lesion or definite/probable stent thrombosis were observed in 2.6% versus 1.7% (P=0.21) and 0.4% versus 0.6% (P=0.50) of SYNERGY versus PROMUS Element Plus-treated subjects, respectively. CONCLUSIONS In this randomized trial, the SYNERGY bioabsorbable polymer everolimus-eluting stent was noninferior to the PROMUS Element Plus everolimus-eluting stent with respect to 1-year target lesion failure. These data support the relative safety and efficacy of SYNERGY in a broad range of patients undergoing percutaneous coronary intervention. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01665053.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE Narcolepsy with cataplexy is tightly associated with the HLA class II allele DQB1*06:02. Evidence indicates a complex contribution of HLA class II genes to narcolepsy susceptibility with a recent independent association with HLA-DPB1. The cause of narcolepsy is supposed be an autoimmune attack against hypocretin-producing neurons. Despite the strong association with HLA class II, there is no evidence for CD4+ T-cell-mediated mechanism in narcolepsy. Since neurons express class I and not class II molecules, the final effector immune cells involved might include class I-restricted CD8+ T-cells. DESIGN HLA class I (A, B, and C) and II (DQB1) genotypes were analyzed in 944 European narcolepsy with cataplexy patients and in 4043 control subjects matched by country of origin. All patients and controls were DQB1*06:02 positive and class I associations were conditioned on DQB1 alleles. RESULTS HLA-A*11:01 (OR = 1.49 [1.18-1.87] P = 7.0*10-4), C*04:01 (OR = 1.34 [1.10-1.63] P = 3.23*10-3), and B*35:01 (OR=1.46 [1.13-1.89] P = 3.64*10-3) were associated with susceptibility to narcolepsy. Analysis of polymorphic class I amino-acids revealed even stronger associations with key antigen-binding residues HLA-A-Tyr9 (OR = 1.32 [1.15-1.52] P = 6.95*10-5) and HLA-C-Ser11 (OR=1.34 [1.15-1.57] P = 2.43*10-4). CONCLUSIONS Our findings provide a genetic basis for increased susceptibility to infectious factors or an immune cytotoxic mechanism in narcolepsy, potentially targeting hypocretin neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Verfasser: Viṣṇuśarma]. Le tout traduit pour la première fois sur les originaux Indiens par M. l'Abbé J. A. Dubois

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. In over 30 years, the prevalence of overweight for children and adolescents has increased across the United States (Barlow et al., 2007; Ogden, Flegal, Carroll, & Johnson, 2002). Childhood obesity is linked with adverse physiological and psychological issues in youth and affects ethnic/minority populations in disproportionate rates (Barlow et al., 2007; Butte et al., 2006; Butte, Cai, Cole, Wilson, Fisher, Zakeri, Ellis, & Comuzzie, 2007). More importantly, overweight in children and youth tends to track into adulthood (McNaughton, Ball, Mishra, & Crawford, 2008; Ogden et al., 2002). Childhood obesity affects body functions such as the cardiovascular, respiratory, gastrointestinal, and endocrine systems, including emotional health (Barlow et al., 2007, Ogden et al., 2002). Several dietary factors have been associated with the development of obesity in children; however, these factors have not been fully elucidated, especially in ethnic/minority children. In particular, few studies have been done to determine the effects of different meal patterns on the development of obesity in children. Purpose. The purpose of the study is to examine the relationships between daily proportions of energy consumed and energy derived from fat across breakfast, lunch, dinner, and snack, and obesity among Hispanic children and adolescents. Methods. A cross-sectional design was used to evaluate the relationship between dietary patterns and overweight status in Hispanic children and adolescents 4-19 years of age who participated in the Viva La Familia Study. The goal of the Viva La Familia Study was to evaluate genetic and environmental factors affecting childhood obesity and its co-morbidities in the Hispanic population (Butte et al., 2006, 2007). The study enrolled 1030 Hispanic children and adolescents from 319 families and examined factors related to increased body weight by focusing on a multilevel analysis of extensive sociodemographic, genetic, metabolic, and behavioral data. Baseline dietary intakes of the children were collected using 24-hour recalls, and body mass index was calculated from measured height and weight, and classified using the CDC standards. Dietary data were analyzed using a GEE population-averaged panel-data model with a cluster variable family identifier to include possible correlations within related data sets. A linear regression model was used to analyze associations of dietary patterns using possible covariates, and to examine the percentage of daily energy coming from breakfast, lunch, dinner, and snack while adjusting for age, sex, and BMI z-score. Random-effects logistic regression models were used to determine the relationship of the dietary variables with obesity status and to understand if the percent energy intake (%EI) derived from fat from all meals (breakfast, lunch, dinner, and snacks) affected obesity. Results. Older children (age 4-19 years) consumed a higher percent of energy at lunch and dinner and less percent energy from snacks compared to younger children. Age was significantly associated with percentage of total energy intake (%TEI) for lunch, as well as dinner, while no association was found by gender. Percent of energy consumed from dinner significantly differed by obesity status, with obese children consuming more energy at dinner (p = 0.03), but no associations were found between percent energy from fat and obesity across all meals. Conclusions. Information from this study can be used to develop interventions that target dietary intake patterns in obesity prevention programs for Hispanic children and adolescents. In particular, intervention programs for children should target dietary patterns with energy intake that is spread throughout the day and earlier in the day. These results indicate that a longitudinal study should be used to further explore the relationship of dietary patterns and BMI in this and other populations (Dubois et al., 2008; Rodriquez & Moreno, 2006; Thompson et al., 2005; Wilson et al., in review, 2008). ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant synchronous shifts in the chemistry, mineralogy, grain sizes and color of the sediments at 6 m below sea floor (mbsf) at ODP Site 1195 on the Marion Plateau (NE Australia) are interpreted to reflect a major regional paleoceanographic change: the initiation of the southern province of the Great Barrier Reef (GBR). The onset of this massive carbonate production centre nearby resulted primarily in increased deposition of carbonate-rich sediments of neritic origin. Both sedimentation rate and terrigenous input record a coincident decline attributed to inshore trapping of materials behind the reefs. Our best estimate places the development of reef framework in the southern part of the GBR between 560 and 670 kyr B.P., based on an age model combining magnetostratigraphic and biostratigraphic data. The proposed estimation agrees with previous studies reporting an age between 500 and 930 kyr B.P., constraining more tightly their results. However, it does not support research placing the birth of the GBR in Marine Isotope Stage (MIS) 11 (~400 kyr), nor the theory of a worldwide modern barrier reef development at that time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to their low metabolism and apparent poor ion regulation ability, sea urchins could be particularly sensitive to ocean acidification resulting from increased dissolution of atmospheric carbon dioxide. Therefore, we evaluated the acid-base regulation ability of the coral reef sea urchin Echinometra mathaei and the impact of decreased pH on its growth and respiration activity. The study was conducted in two identical artificial reef mesocosms during seven weeks. Experimental tanks were maintained respectively at mean pHT 7.7 and 8.05 (with field-like night and day variations). The major physico-chemical parameters were identical, only pCO2 and pHT differed. Results indicate that E. mathaei can regulate the pH of its coelomic fluid in the considered range of pH, allowing a sustainable growth and ensuring an unaffected respiratory metabolism, at least at short term.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of pH ranging from 8.0 to 6.8 (total scale - pHT) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pHT = 7.4) and another where pH was more stable (lowest pHT = 7.8). The highest pHT at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pHT 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pHT 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. Its impact will depend on the considered organisms and ecosystems. The intertidal may harbor organisms pre-adapted to the upcoming changes as they face tidal pH and temperature fluctuations. However, these environments will be more affected as shallow waters will face the highest decrease in seawater pH. In this context, the effects of reduced environmental pH on the physiology and tube feet mechanical properties of the intertidal starfish Asterias rubens, a top predator, were investigated during 15 and 27 days. A. rubens showed a respiratory acidosis with its coelomic fluid pH always lower than that of seawater. This acidosis was most pronounced at pH 7.4. Notwithstanding, the starfish showed no significant variations in RNA/DNA ratio of different tissues and in tube feet strength. However, respiration rates were significantly lower for individuals maintained at reduced seawater pH. Within the ocean acidification context, the present results suggest that A. rubens withstands the effects of reduced seawater pH, at least for medium term exposures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. The impact of these chemical changes depends on the considered organisms. In particular, it depends on the ability of the organism to control the pH of its inner fluids. Among echinoderms, this ability seems to differ significantly according to species or taxa. In the present paper, we investigated the buffer capacity of the coelomic fluid in different echinoderm taxa as well as factors modifying this capacity. Euechinoidea (sea urchins except Cidaroidea) present a very high buffer capacity of the coelomic fluid (from 0.8 to 1.8 mmol/kg SW above that of seawater), while Cidaroidea (other sea urchins), starfish and holothurians have a significantly lower one (from -0.1 to 0.4 mmol/kg SW compared to seawater). We hypothesize that this is linked to the more efficient gas exchange structures present in the three last taxa, whereas Euechinoidea evolved specific buffer systems to compensate lower gas exchange abilities. The constituents of the buffer capacity and the factors influencing it were investigated in the sea urchin Paracentrotus lividus and the starfish Asterias rubens. Buffer capacity is primarily due to the bicarbonate buffer system of seawater (representing about 63% for sea urchins and 92% for starfish). It is also partly due to coelomocytes present in the coelomic fluid (around 8% for both) and, in P. lividus only, a compound of an apparent size larger than 3 kDa is involved (about 15%). Feeding increased the buffer capacity in P. lividus (to a difference with seawater of about 2.3 mmol/kg SW compared to unfed ones who showed a difference of about 0.5 mmol/kg SW) but not in A. rubens (difference with seawater of about 0.2 for both conditions). In P. lividus, decreased seawater pH induced an increase of the buffer capacity of individuals maintained at pH 7.7 to about twice that of the control individuals and, for those at pH 7.4, about three times. This allowed a partial compensation of the coelomic fluid pH for individuals maintained at pH 7.7 but not for those at pH 7.4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of the chemical changes in the ocean waters due to the increasing atmospheric CO2 depends on the ability of an organism to control extracellular pH. Among sea urchins, this seems specific to the Euechinoidea, sea urchins except Cidaroidea. However, Cidaroidea survived two ocean acidification periods: the Permian-Trias and the Cretaceous-Tertiary crises. We investigated the response of these two sea urchin groups to reduced seawater pH with the tropical cidaroid Eucidaris tribuloides, the sympatric euechinoid Tripneustes ventricosus and the temperate euechinoid Paracentrotus lividus. Both euechinoid showed a compensation of the coelomic fluid pH due to increased buffer capacity. This was linked to an increased concentration of DIC in the coelomic fluid and thus of bicarbonate ions (most probably originating from the surrounding seawater as isotopic signature of the carbon -delta 13C- was similar). On the other hand, the cidaroid showed no changes within the coelomic fluid. Moreover, the delta 13C of the coelomic fluid did not match that of the seawater and was not significantly different between the urchins from the different treatments. Feeding rate was not affected in any species. While euechinoids are able to regulate their extracellular acid-base balance, many questions are still unanswered on the costs of this capacity. On the contrary, cidaroids do not seem affected by a reduced seawater pH. Further investigations need to be undertaken to cover more species and physiological and metabolic parameters in order to determine if energy trade-offs occur and how this mechanism of compensation is distributed among sea urchins.