985 resultados para DEPENDENT PHOSPHORYLATION
Resumo:
ABSTRACT: BACKGROUND: Although smokers tend to have a lower body-mass index than non-smokers, smoking may favour abdominal body fat accumulation. To our knowledge, no population-based studies have assessed the relationship between smoking and body fat composition. We assessed the association between cigarette smoking and waist circumference, body fat, and body-mass index. METHODS: Height, weight, and waist circumference were measured among 6,123 Caucasians (ages 35-75) from a cross-sectional population-based study in Switzerland. Abdominal obesity was defined as waist circumference>=102 cm for men and >=88 cm for women. Body fat (percent total body weight) was measured by electrical bioimpedance. Age- and sex-specific body fat cut-offs were used to define excess body fat. Cigarettes smoked per day were assessed by self-administered questionnaire. Age-adjusted means and odds ratios were calculated using linear and logistic regression. RESULTS: Current smokers (29% of men and 24% of women) had lower mean waist circumference, body fat percentage, and body-mass index compared with non-smokers. Age-adjusted mean waist circumference and body fat increased with cigarettes smoked per day among smokers. The association between cigarettes smoked per day and body-mass index was non-significant. Compared with light smokers, the adjusted odds ratio (OR) for abdominal obesity in men was 1.28 (0.78-2.10) for moderate smokers and 1.94 (1.15-3.27) for heavy smokers (P=0.03 for trend), and 1.07 (0.72-1.58) and 2.15 (1.26-3.64) in female moderate and heavy smokers, respectively (P<0.01 for trend). Compared with light smokers, the OR for excess body fat in men was 1.05 (95% CI: 0.58-1.92) for moderate smokers and 1.15 (0.60-2.20) for heavy smokers (P=0.75 for trend) and 1.34 (0.89-2.00) and 2.11 (1.25-3.57), respectively in women (P=0.07 for trend). CONCLUSION: Among smokers, cigarettes smoked per day were positively associated with central fat accumulation, particularly in women.
Resumo:
Glucagon-like peptide-1 stimulates glucose-induced insulin secretion by binding to a specific G protein-coupled receptor that activates the adenylyl cyclase pathway. We previously demonstrated that heterologous desensitization of the receptor by protein kinase C correlated with phosphorylation in a 33-amino acid-long segment of the receptor carboxyl-terminal cytoplasmic tail. Here, we determined that the in vivo sites of phosphorylation are four serine doublets present at positions 431/432, 441/442, 444/445, and 451/452. In vitro phosphorylation of fusion proteins containing mutant receptor C-tails, however, indicated that whereas serines at position 431/432 were good substrates for protein kinase C (PKC), serines 444/445 and 451/452 were poor substrates, and serines 441/442 were not substrates. In addition, serine 416 was phosphorylated on fusion protein but not in intact cells. This indicated that in vivo a different PKC isoform or a PKC-activated kinase may phosphorylate the receptor. The role of phosphorylation on receptor desensitization was assessed using receptor mutants expressed in COS cells or Chinese hamster lung fibroblasts. Mutation of any single serine doublet to alanines reduced the extent of phorbol 12-myristate 13-acetate-induced desensitization, whereas substitution of any combination of two serine doublets suppressed it. Our data thus show that the glucagon-like peptide-1 receptor can be phosphorylated in response to phorbol 12-myristate 13-acetate on four different sites within the cytoplasmic tail. Furthermore, phosphorylation of at least three sites was required for desensitization, although maximal desensitization was only achieved when all four sites were phosphorylated.
Resumo:
The Rho family GTPases Cdc42 and Rac1 are critical regulators of the actin cytoskeleton and are essential for skin and hair function. Wiskott-Aldrich syndrome family proteins act downstream of these GTPases, controlling actin assembly and cytoskeletal reorganization, but their role in epithelial cells has not been characterized in vivo. Here, we used a conditional knockout approach to assess the role of neural Wiskott-Aldrich syndrome protein (N-WASP), the ubiquitously expressed Wiskott-Aldrich syndrome-like (WASL) protein, in mouse skin. We found that N-WASP deficiency in mouse skin led to severe alopecia, epidermal hyperproliferation, and ulceration, without obvious effects on epidermal differentiation and wound healing. Further analysis revealed that the observed alopecia was likely the result of a progressive and ultimately nearly complete block in hair follicle (HF) cycling by 5 months of age. N-WASP deficiency also led to abnormal proliferation of skin progenitor cells, resulting in their depletion over time. Furthermore, N-WASP deficiency in vitro and in vivo correlated with decreased GSK-3beta phosphorylation, decreased nuclear localization of beta-catenin in follicular keratinocytes, and decreased Wnt-dependent transcription. Our results indicate a critical role for N-WASP in skin function and HF cycling and identify a link between N-WASP and Wnt signaling. We therefore propose that N-WASP acts as a positive regulator of beta-catenin-dependent transcription, modulating differentiation of HF progenitor cells.
Resumo:
IL-2 plays a pivotal role in regulating the adaptive immune system by controlling the survival and proliferation of regulatory T (Treg) cells, which are required for the maintenance of immune tolerance. Moreover, IL-2 is implicated in the differentiation and homeostasis of effector T-cell subsets, including T(H)1, T(H)2, T(H)17, and memory CD8+ T cells. The IL-2 receptor is composed of 3 distinct subunits, namely the alpha (CD25), beta (CD122), and gamma (gammac) chains. Of crucial importance for the delivery of IL-2 signals to Treg cells is the expression of CD25, which, along with CD122 and gammac, confers high affinity binding to IL-2. Notably, recent findings suggest a novel role for CD25, whereby CD25 molecules on Treg cells and possibly other cells are capable of influencing T-cell homeostasis by means of IL-2 deprivation. This review explores these findings and integrates them into our current understanding of T-cell homeostasis.
Resumo:
Background and Aims: The international EEsAI study group is currently developing the first activity index specific for Eosinophilic Esophagitis (EoE). None of the existing dysphagia questionnaires takes into account the consistency of the ingested food that considerably impacts the symptom presentation. Goal: To develop an EoE-specific questionnaire assessing dysphagia associated with different food consistencies. Methods: Based on patient chart reviews, an expert panel (EEsAI study group) identified internationally standardized food prototypes typically associated with EoE-related dysphagia. Food consistencies were correlated with EoE-related dysphagia, also considering potential food avoidance. This Visual Dysphagia Questionnaire (VDQ) was then tested, as a pilot, in 10 EoE patients. Results: The following 9 food consistency prototypes were identified: water, soft foods (pudding, jelly), grits, toast bread, French fries, dry rice, ground meat, raw fibrous foods (eg. apple, carrot), solid meat. Dysphagia was ranked on a 5-point Likert scale (0=no difficulties, 5=very severe difficulties, food will not pass). Severity of dysphagia in the 10 EoE patients was related to the eosinophil load and presence of esophageal strictures. Conclusions: The VDQ will be the first EoE-specific tool for assessing dysphagia related to internationally defined food consistencies. It performed well in a pilot study and will now be further evaluated in a cohort study including 100 adult and 100 pediatric EoE patients.
Resumo:
BACKGROUND: The mutation status of the BRAF and KRAS genes has been proposed as prognostic biomarker in colorectal cancer. Of them, only the BRAF V600E mutation has been validated independently as prognostic for overall survival and survival after relapse, while the prognostic value of KRAS mutation is still unclear. We investigated the prognostic value of BRAF and KRAS mutations in various contexts defined by stratifications of the patient population. METHODS: We retrospectively analyzed a cohort of patients with stage II and III colorectal cancer from the PETACC-3 clinical trial (N = 1,423), by assessing the prognostic value of the BRAF and KRAS mutations in subpopulations defined by all possible combinations of the following clinico-pathological variables: T stage, N stage, tumor site, tumor grade and microsatellite instability status. In each such subpopulation, the prognostic value was assessed by log rank test for three endpoints: overall survival, relapse-free survival, and survival after relapse. The significance level was set to 0.01 for Bonferroni-adjusted p-values, and a second threshold for a trend towards statistical significance was set at 0.05 for unadjusted p-values. The significance of the interactions was tested by Wald test, with significance level of 0.05. RESULTS: In stage II-III colorectal cancer, BRAF mutation was confirmed a marker of poor survival only in subpopulations involving microsatellite stable and left-sided tumors, with higher effects than in the whole population. There was no evidence for prognostic value in microsatellite instable or right-sided tumor groups. We found that BRAF was also prognostic for relapse-free survival in some subpopulations. We found no evidence that KRAS mutations had prognostic value, although a trend was observed in some stratifications. We also show evidence of heterogeneity in survival of patients with BRAF V600E mutation. CONCLUSIONS: The BRAF mutation represents an additional risk factor only in some subpopulations of colorectal cancers, in others having limited prognostic value. However, in the subpopulations where it is prognostic, it represents a marker of much higher risk than previously considered. KRAS mutation status does not seem to represent a strong prognostic variable.
Resumo:
The endothelin receptor antagonist avosentan may cause fluid overload at doses of 25 and 50 mg, but the actual mechanisms of this effect are unclear. We conducted a placebo-controlled study in 23 healthy subjects to assess the renal effects of avosentan and the dose dependency of these effects. Oral avosentan was administered once daily for 8 days at doses of 0.5, 1.5, 5, and 50 mg. The drug induced a dose-dependent median increase in body weight, most pronounced at 50 mg (0.8 kg on day 8). Avosentan did not affect renal hemodynamics or plasma electrolytes. A dose-dependent median reduction in the fractional renal excretion of sodium was found (up to 8.7% at avosentan 50 mg); this reduction was paralleled by a dose-related increase in proximal sodium reabsorption. It is suggested that avosentan dose-dependently induces sodium retention by the kidney, mainly through proximal tubular effects. The potential clinical benefits of avosentan should therefore be investigated at doses of <or= 5 mg.
Resumo:
In many systems, microtubules contribute spatial information to cell morphogenesis, for instance in cell migration and division. In rod-shaped fission yeast cells, microtubules control cell morphogenesis by transporting polarity factors, namely the Tea1-Tea4 complex, to cell tips. This complex then recruits the DYRK kinase Pom1 to cell ends. Interestingly, recent work has shown that these proteins also provide long-range spatial cues to position the division site in the middle of the cell and temporal signals to coordinate cell length with the cell cycle. Here I review how these microtubule-associated proteins form polar morphogenesis centers that control and integrate both spatial and temporal aspects of cell morphogenesis.
Resumo:
Abstract : The term "muscle disuse" is often used to refer collectively to reductions in neuromuscular activity as observed with sedentary lifestyles, reduced weight bearing, cancer, chronic obstructive pulmonary disease, chronic heart failure, spinal cord injury, sarcopenia or exposure to microgravity (spaceflight). Muscle disuse atrophy, caused by accelerated proteolysis, is predominantly due to the activation of the ATP-dependent ubiquitin (Ub) proteasome pathway. The current advances in understanding the molecular factors contributing to the Ub-dependent proteolysis process have been made mostly in rodent models of human disease and denervation with few investigations performed directly in humans. Recently, in mice, the genes Atrogin-1 and MuRF1 have been designated as primary candidates in the control of muscle atrophy. Additionally, the decreased activity of the Akt/GSK-3ß and Akt/mTOR pathways has been associated with a reduction in protein synthesis and contributing to skeletal muscle atrophy. Therefore, it is now commonly accepted that skeletal muscle atrophy is the result of a decreased protein synthesis concomitant with an increase in protein degradation (Glass 2003). Atrogin-1 and MuRF1 are genes expressed exclusively in muscle. In mice, their expression has been shown to be directly correlated with the severity of atrophy. KO-mice experiments showed a major protection against atrophy when either of these genes were deleted. Skeletal muscle hypertrophy is an important function in normal postnatal development and in the adaptive response to exercise. It has been shown, in vitro, that the activation of phosphatidylinositol 3-kinase (PI-3K), by insulin growth factor 1 (IGF-1), stimulates myotubes hypertrophy by activating the downstream pathways, Akt/GSK-3ß and Akt/mTOR. It has also been demonstrated in mice, in vivo, that activation of these signalling pathways causes muscle hypertrophy. Moreover, the latter were recently proposed to also reduce muscle atrophy by inhibiting the FKHR mediated transcription of several muscle atrophy genes; Atrogin-1 and MuRF1. Therefore, these targets present new avenues for developing further the understanding of the molecular mechanisms involved in both skeletal muscle atrophy and hypertrophy. The present study proposed to investigate the regulation of the Akt/GSK-3ß and Akt/mTOR signalling pathways, as well as the expression levels of the "atrogenes", Atrogin-1 and MuRF1, in four human models of skeletal muscle atrophy. In the first study, we measured the regulation of the Akt signalling pathway after 8 weeks of both hypertrophy stimulating resistance training and atrophy stimulation de-training. As expected following resistance training, muscle hypertrophy and an increase in the phosphorylation status of the different members of the Akt pathway was observed. This was paralleled by a concomitant decrease in FOXO1 nuclear protein content. Surprisingly, exercise training also induced an increase in the, expression of the atrophy genes and proteins involved in the ATP-dependant ubiquitin-proteasome system. On the opposite, following the de-training period a muscle atrophy, relative to the post-training muscle size, was measured. At the same time, the phosphorylation levels of Akt and GSK-3ß were reduced while the amount of FOXO1 in the nucleus increased. After the atrophy phase, there was also a reduction in Atrogin-1 and MuRF1 contents. In this study, we demonstrate for the first time in healthy human skeletal muscle, that the regulation of Akt and its downstream targets GSK-3ß, mTOR and FOXO1 are associated with both thé skeletal muscle hypertrophy and atrophy processes. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of both upper and lower motor neurons, which leads to severe muscle weakness and atrophy. All measurements were performed in biopsies from 22 ALS patients and 16 healthy controls. ALS patients displayed an increase in Atrogin-1 mRNA and protein content which was associated with a decrease in Akt activity. However there was no difference in the mRNA and phospho-protein content of FOXO1, FOXO3a, p70S6K and GSK-3ß. The transcriptional regulation of human Atrogin-1 may be controlled by an Akt-mediated transcription factor other than FKHR or via an other signalling pathway. Chronic complete spinal cord injury (SCI) is associated with severe muscle atrophy which is linked to co-morbidity factors such as diabetes, obesity, lipid disorders and cardiovascular diseases. Molecular mechanisms associated with chronic complete SCI-related muscle atrophy are not well understood. The aim of the present study was to determine if there was an increase in catabolic signalling targets such as Atrogin-1, MuRF1, FOXO and myostatin, and decreases in anabolic signalling targets such as IGF, Akt, GSK-3ß, mTOR, 4E-BP1 and p-70S6K in chronic complete SCI patients. All measurements were performed in biopsies taken from 8 complete chronic SCI patients and 7 age matched healthy controls. In SCI patients when compared with controls, there was a significant reduction in mRNA levels of Atrogin1, MuRF1 and Myostatin. Protein levels for Atrogin-1, FOX01 and FOX03a were also reduced. IGF-1 and both phosphorylated GSK-3ß and 4E-BP1 were decreased; the latter two in an Akt and mTOR independent manner, respectively. Reductions in Atrogin-1, MuRF1, FOXO and myostatin suggest the existence of an internal mechanism aimed at reducing further loss of muscle proteins during chronic SCI. The downregulation of signalling proteins regulating anabolism such as IGF, GSK3ß and 4E-BP1 would reduce the ability to increase protein synthesis rates in this chronic state of muscle wasting. The molecular mechanisms controlling age-related skeletal muscle loss in humans are poorly understood. The present study aimed to investigate the regulation of several genes and proteins involved in the activation of key signalling pathways promoting muscle hypertrophy such as GH/STAT5/IGF, IGF/Akt/GSK-3ß/4E-BP1 and muscle atrophy such as TNFα/SOCS3 and Akt/FOXO/Atrogin-1 or MuRF1 in muscle biopsies from 13 young and 16 elderly men. In the older, as compared with the young subjects, TNFα and SOCS-3 were increased while growth hormone receptor protein (GHR) and IGF-1 mRNA were both decreased. Akt protein levels were increased however no change in phosphorylated Akt content was observed. GSK-3ß phosphorylation levels were increased while 4E-BP1 was not changed. Nuclear FKHR and FKHRL1 protein levels were decreased, with no changes in their atrophy target genes, Atrogin-1 and MuRF1. Myostatin mRNA and protein levels were significantly elevated. Human sarcopenia may be linked to a reduction in the activity or sensitivity of anabolic signalling proteins such as GHR, IGF and Akt. TNFα, SOCS-3 and myostatin are potential candidates influencing this anabolic perturbation. In conclusion our results support those obtained in rodent or ín vitro models, and demonstrate Akt plays a pivotal role in the control of muscle mass in humans. However, the Akt phosphorylation status was dependant upon the model of muscle atrophy as Akt phosphorylation was reduced in all atrophy models except for SCI. Additionally, the activity pattern of the downstream targets of Akt appears to be different upon the various human models. It seems that under particular conditions such as spinal cord injury or sarcopenia, .the regulation of GSK-3ß, 4eBP1 and p70S6K might be independent of Akt suggesting alternative signalling pathways in the control of these the anabolic response in human skeletal muscle. The regulation of Atrogin-1 and MuRF1 in some of our studies has been shown to be also independent of the well-described Akt/FOXO signalling pathway suggesting that other transcription factors may regulate human Atrogin-1 and MuRF1. These four different models of skeletal muscle atrophy and hypertrophy have brought a better understanding concerning the molecular mechanisms controlling skeletal muscle mass in humans.
Resumo:
The differential distribution and phosphorylation of tau proteins in cat cerebellum was studied with two well characterized antibodies, TAU-1 and TAU-2. TAU-1 detects tau proteins in axons, and the epitope in perikarya and dendrites is masked by phosphorylation. TAU-2 detects a phosphorylation-independent epitope on tau proteins. The molecular composition of tau proteins in the range of 45 kD to 64 kD at birth changed after the first postnatal month to a set of several adult variants of higher molecular weights in the range of 59 kD to 95 kD. The appearance of tau proteins in subsets of axons corresponds to the axonal maturation of cerebellar local-circuit neurons in granular and molecular layers and confirms previous studies. Tau proteins were also identified in synapses by immunofluorescent double-staining with synapsin I, located in the pinceau around the Purkinje cells, and in glomeruli. Dephosphorylation of juvenile cerebellar tissue by alkaline phosphatase indicated indirectly the presence of differentially phosphorylated tau forms mainly in juvenile ages. Additional TAU-1 immunoreactivity was unmasked in numerous perikarya and dendrites of stellate cells, and in cell bodies of granule cells. Purkinje cell bodies were stained transiently at juvenile ages. During postnatal development, the intensity of the phosphate-dependent staining decreased, suggesting that phosphorylation of tau proteins in perikarya and dendrites may be essential for early steps in neuronal morphogenesis during cat cerebellum development.
Resumo:
The positive transcription elongation factor (P-TEFb) consists of CDK9, a cyclin-dependent kinase and its cyclin T partner. It is required for transcription of most class II genes. Its activity is regulated by non-coding RNAs. The 7SK cellular RNA turns the HEXIM cellular protein into a P-TEFb inhibitor that binds its cyclin T subunit. Thus, P-TEFb activity responds to variations in global cellular transcriptional activity and to physiological conditions linked to cell differentiation, proliferation or cardiac hypertrophy. In contrast, the Tat activation region RNA plays an activating role. This feature at the 5' end of the human immunodeficiency (HIV) viral transcript associates with the viral protein Tat that in turn binds cyclin T1 and recruits active P-TEFb to the HIV promoter. This results in enhanced P-TEFb activity, which is critical for an efficient production of viral transcripts. Although discovered recently, the regulation of P-TEFb becomes a paradigm for non-coding RNAs that regulate transcription factors. It is also a unique example of RNA-driven regulation of a cyclindependent kinase.
Resumo:
Background: The transcription factor IRF4 is involved in several T-cell-dependent chronic inflammatory diseases. To elucidate the mechanisms for pathological cytokine production in colitis, we addressed the role of the IRF transcription factors in human inflammatory bowel disease (IBD) and experimental colitis.Methods: IRF levels and cytokine production in IBD patients were studied as well as the effects of IRF4 deficiency in experimental colitis.Results: In contrast to IRF1, IRF5, and IRF8, IRF4 expression in IBD was augmented in the presence of active inflammation. Furthermore, IRF4 levels significantly correlated with IL-6 and IL-17 mRNA expression and to a lesser extent with IL-22 mRNA expression in IBD. To further explore the role of IRF4 under in vivo conditions, we studied IRF4-deficient and wildtype mice in experimental colitis. In contrast to DSS colitis, IRF4 deficiency was protective in T-cell-dependent transfer colitis associated with reduced ROR alpha/gamma t levels and impaired IL-6, IL-17a, and IL-22 production, suggesting that IRF4 acts as a master regulator of mucosal Th17 cell differentiation. Subsequent mechanistic studies using database analysis, chromatin immunoprecipitation, and electrophoretic mobility shift assays identified a novel IRF4 binding site in the IL-17 gene promoter. Overexpression of IRF4 using retroviral infection induced IL-17 production and IL-17 together with IL-6 induced ROR gamma t expression.Conclusions: IRF4 can directly bind to the IL-17 promotor and induces mucosal ROR gamma t levels and IL-17 gene expression thereby controlling Th17-dependent colitis. Targeting of this molecular mechanism may lead to novel therapeutic approaches in human IBD.
Resumo:
The work studies a general multiserver queue in which the service time of an arriving customer and the next interarrival period may depend on both the current waiting time and the server assigned to the arriving customer. Stability of the system is proved under general assumptions on the predetermined distributions describing the model. The proof exploits a combination of the Markov property of the workload process with a regenerative property of the process. The key idea leading to stability is a characterization of the limit behavior of the forward renewal process generated by regenerations. Extensions of the basic model are also studied.
Resumo:
The functionality of adult neocortical circuits can be altered by novel experiences or learning. This functional plasticity appears to rely on changes in the strength of neuronal connections that were established during development. Here we will describe some of our studies in which we have addressed whether structural changes, including the remodeling of axons and dendrites with synapse formation and elimination, could underlie experience-dependent plasticity in the adult neocortex. Using 2-photon laser-scanning microscopes and transgenic mice expressing GFP in a subset of pyramidal cells, we have observed that a small subset of dendritic spines continuously appear and disappear on a daily basis, whereas the majority of spines persists for months. Axonal boutons from different neuronal classes displayed similar behavior, although the extent of remodeling varied. Under baseline conditions, new spines in the barrel cortex were mostly transient and rarely survived for more than a week. However, when every other whisker was trimmed, the generation and loss of persistent spines was enhanced. Ultrastructural reconstruction of previously imaged spines and boutons showed that new spines slowly form synapses. New spines persisting for a few days always had synapses, whereas very young spines often lacked synapses. New synapses were predominantly found on large, multi-synapse boutons, suggesting that spine growth is followed by synapse formation, preferentially on existing boutons. Altogether our data indicate that novel sensory experience drives the stabilization of new spines on subclasses of cortical neurons and promotes the formation of new synapses. These synaptic changes likely underlie experience-dependent functional remodeling of specific neocortical circuits.
Resumo:
AIMS: In patients with alcohol dependence, health-related quality of life (QOL) is reduced compared with that of a normal healthy population. The objective of the current analysis was to describe the evolution of health-related QOL in adults with alcohol dependence during a 24-month period after initial assessment for alcohol-related treatment in a routine practice setting, and its relation to drinking pattern which was evaluated across clusters based on the predominant pattern of alcohol use, set against the influence of baseline variables METHODS: The Medical Outcomes Study 36-Item Short-Form Survey (MOS-SF-36) was used to measure QOL at baseline and quarterly for 2 years among participants in CONTROL, a prospective observational study of patients initiating treatment for alcohol dependence. The sample consisted of 160 adults with alcohol dependence (65.6% males) with a mean (SD) age of 45.6 (12.0) years. Alcohol use data were collected using TimeLine Follow-Back. Based on the participant's reported alcohol use, three clusters were identified: 52 (32.5%) mostly abstainers, 64 (40.0%) mostly moderate drinkers and 44 (27.5%) mostly heavy drinkers. Mixed-effect linear regression analysis was used to identify factors that were potentially associated with the mental and physical summary MOS-SF-36 scores at each time point. RESULTS: The mean (SD) MOS-SF-36 mental component summary score (range 0-100, norm 50) was 35.7 (13.6) at baseline [mostly abstainers: 40.4 (14.6); mostly moderate drinkers 35.6 (12.4); mostly heavy drinkers 30.1 (12.1)]. The score improved to 43.1 (13.4) at 3 months [mostly abstainers: 47.4 (12.3); mostly moderate drinkers 44.2 (12.7); mostly heavy drinkers 35.1 (12.9)], to 47.3 (11.4) at 12 months [mostly abstainers: 51.7 (9.7); mostly moderate drinkers 44.8 (11.9); mostly heavy drinkers 44.1 (11.3)], and to 46.6 (11.1) at 24 months [mostly abstainers: 49.2 (11.6); mostly moderate drinkers 45.7 (11.9); mostly heavy drinkers 43.7 (8.8)]. Mixed-effect linear regression multivariate analyses indicated that there was a significant association between a lower 2-year follow-up MOS-SF-36 mental score and being a mostly heavy drinker (-6.97, P < 0.001) or mostly moderate drinker (-3.34 points, P = 0.018) [compared to mostly abstainers], being female (-3.73, P = 0.004), and having a Beck Inventory scale score ≥8 (-6.54, P < 0.001), at baseline. The mean (SD) MOS-SF-36 physical component summary score was 48.8 (10.6) at baseline, remained stable over the follow-up and did not differ across the three clusters. Mixed-effect linear regression univariate analyses found that the average 2-year follow-up MOS-SF-36 physical score was increased (compared with mostly abstainers) in mostly heavy drinkers (+4.44, P = 0.007); no other variables tested influenced the MOS-SF-36 physical score. CONCLUSION: Among individuals with alcohol dependence, a rapid improvement was seen in the mental dimension of QOL following treatment initiation, which was maintained during 24 months. Improvement was associated with the pattern of alcohol use, becoming close to the general population norm in patients classified as mostly abstainers, improving substantially in mostly moderate drinkers and improving only slightly in mostly heavy drinkers. The physical dimension of QOL was generally in the normal range but was not associated with drinking patterns.