936 resultados para Credit cycles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest models are tools for explaining and predicting the dynamics of forest ecosystems. They simulate forest behavior by integrating information on the underlying processes in trees, soil and atmosphere. Bayesian calibration is the application of probability theory to parameter estimation. It is a method, applicable to all models, that quantifies output uncertainty and identifies key parameters and variables. This study aims at testing the Bayesian procedure for calibration to different types of forest models, to evaluate their performances and the uncertainties associated with them. In particular,we aimed at 1) applying a Bayesian framework to calibrate forest models and test their performances in different biomes and different environmental conditions, 2) identifying and solve structure-related issues in simple models, and 3) identifying the advantages of additional information made available when calibrating forest models with a Bayesian approach. We applied the Bayesian framework to calibrate the Prelued model on eight Italian eddy-covariance sites in Chapter 2. The ability of Prelued to reproduce the estimated Gross Primary Productivity (GPP) was tested over contrasting natural vegetation types that represented a wide range of climatic and environmental conditions. The issues related to Prelued's multiplicative structure were the main topic of Chapter 3: several different MCMC-based procedures were applied within a Bayesian framework to calibrate the model, and their performances were compared. A more complex model was applied in Chapter 4, focusing on the application of the physiology-based model HYDRALL to the forest ecosystem of Lavarone (IT) to evaluate the importance of additional information in the calibration procedure and their impact on model performances, model uncertainties, and parameter estimation. Overall, the Bayesian technique proved to be an excellent and versatile tool to successfully calibrate forest models of different structure and complexity, on different kind and number of variables and with a different number of parameters involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a process-based modelling approach to quantify carbon uptake by lichens and bryophytes at the global scale. Based on the modelled carbon uptake, potential global rates of nitrogen fixation, phosphorus uptake and chemical weathering by the organisms are estimated. In this way, the significance of lichens and bryophytes for global biogeochemical cycles can be assessed. The model uses gridded climate data and key properties of the habitat (e.g. disturbance intervals) to predict processes which control net carbon uptake, namely photosynthesis, respiration, water uptake and evaporation. It relies on equations used in many dynamical vegetation models, which are combined with concepts specific to lichens and bryophytes, such as poikilohydry or the effect of water content on CO2 diffusivity. To incorporate the great functional variation of lichens and bryophytes at the global scale, the model parameters are characterised by broad ranges of possible values instead of a single, globally uniform value. The predicted terrestrial net uptake of 0.34 to 3.3 Gt / yr of carbon and global patterns of productivity are in accordance with empirically-derived estimates. Based on the simulated estimates of net carbon uptake, further impacts of lichens and bryophytes on biogeochemical cycles are quantified at the global scale. Thereby the focus is on three processes, namely nitrogen fixation, phosphorus uptake and chemical weathering. The presented estimates have the form of potential rates, which means that the amount of nitrogen and phosphorus is quantified which is needed by the organisms to build up biomass, also accounting for resorption and leaching of nutrients. Subsequently, the potential phosphorus uptake on bare ground is used to estimate chemical weathering by the organisms, assuming that they release weathering agents to obtain phosphorus. The predicted requirement for nitrogen ranges from 3.5 to 34 Tg / yr and for phosphorus it ranges from 0.46 to 4.6 Tg / yr. Estimates of chemical weathering are between 0.058 and 1.1 km³ / yr of rock. These values seem to have a realistic order of magnitude and they support the notion that lichens and bryophytes have the potential to play an important role for global biogeochemical cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approccio unificato alla gestione e alla valutazione del planning in stabilimenti e magazzini, presso Coca Cola HBC Italia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sovereign ratings have only recently regained attention in the academic debate. This seems to be somewhat surprising against the background that their influence is well-known and that rating decisions have often been criticized in the past (as for example during the Asian crisis in the 90s). Sovereign ratings do not only assess the creditworthiness of governments: They are also included in the calculation of ratings for sub-sovereign issuers whereby their rating is usually restricted to the upper bound of the sovereign rating (sovereign ceiling). Earlier studies have also shown that the downgrade of a sovereign often leads to contagion effects on neighbor countries. This study focuses first on misleading incentives in the rating industry before chapter three summarizes the literature on the influence and determinants of sovereign ratings. The fourth chapter explores empirically how ratings respond to changes in sovereign debt across specific country groups. The fifth part focuses on single rating decisions of four selected rating agencies and investigates whether the timing of decisions gives reason for herding behavior. The final chapter presents a reform proposal for the future regulation of the rating industry in light of the aforementioned flaws.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test the hypothesis that muscle fibers are depolarized in patients with chronic renal failure, by measuring velocity recovery cycles of muscle action potentials as indicators of muscle membrane potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test the hypothesis that muscle fibers are depolarized in patients with critical illness myopathy by measuring velocity recovery cycles (VRCs) of muscle action potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning by reinforcement is important in shaping animal behavior, and in particular in behavioral decision making. Such decision making is likely to involve the integration of many synaptic events in space and time. However, using a single reinforcement signal to modulate synaptic plasticity, as suggested in classical reinforcement learning algorithms, a twofold problem arises. Different synapses will have contributed differently to the behavioral decision, and even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike-time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward, but also by a population feedback signal. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference (TD) based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task, the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second task involves an action sequence which is itself extended in time and reward is only delivered at the last action, as it is the case in any type of board-game. The third task is the inspection game that has been studied in neuroeconomics, where an inspector tries to prevent a worker from shirking. Applying our algorithm to this game yields a learning behavior which is consistent with behavioral data from humans and monkeys, revealing themselves properties of a mixed Nash equilibrium. The examples show that our neuronal implementation of reward based learning copes with delayed and stochastic reward delivery, and also with the learning of mixed strategies in two-opponent games.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning by reinforcement is important in shaping animal behavior. But behavioral decision making is likely to involve the integration of many synaptic events in space and time. So in using a single reinforcement signal to modulate synaptic plasticity a twofold problem arises. Different synapses will have contributed differently to the behavioral decision and, even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward but by a population feedback signal as well. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second one involves an action sequence which is itself extended in time and reward is only delivered at the last action, as is the case in any type of board-game. The third is the inspection game that has been studied in neuroeconomics. It only has a mixed Nash equilibrium and exemplifies that the model also copes with stochastic reward delivery and the learning of mixed strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a model for plasticity induction in reinforcement learning which is based on a cascade of synaptic memory traces. In the cascade of these so called eligibility traces presynaptic input is first corre lated with postsynaptic events, next with the behavioral decisions and finally with the external reinforcement. A population of leaky integrate and fire neurons endowed with this plasticity scheme is studied by simulation on different tasks. For operant co nditioning with delayed reinforcement, learning succeeds even when the delay is so large that the delivered reward reflects the appropriateness, not of the immediately preceeding response, but of a decision made earlier on in the stimulus - decision sequence . So the proposed model does not rely on the temporal contiguity between decision and pertinent reward and thus provides a viable means of addressing the temporal credit assignment problem. In the same task, learning speeds up with increasing population si ze, showing that the plasticity cascade simultaneously addresses the spatial problem of assigning credit to the different population neurons. Simulations on other task such as sequential decision making serve to highlight the robustness of the proposed sch eme and, further, contrast its performance to that of temporal difference based approaches to reinforcement learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with orthostatic hypotension may experience neck pain radiating to the occipital region of the skull and the shoulders while standing (so-called coat-hanger ache). This study assessed muscle membrane potential in the trapezius muscle of patients with orthostatic hypotension and healthy subjects during head-up tilt (HUT), by measuring velocity recovery cycles (VRCs) of muscle action potentials as an indicator of muscle membrane potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Velocity recovery cycles (VRCs) of human muscle action potentials have been proposed as a new technique for assessing muscle membrane function in myopathies. This study was undertaken to determine the variability and repeatability of VRC measures such as supernormality, to help guide future clinical use of the method.

Relevância:

20.00% 20.00%

Publicador: