960 resultados para Corporate image
Resumo:
The assembly of aerospace and automotive structures in recent years is increasingly carried out using adhesives. Adhesive joints have advantages of uniform stress distribution and less stress concentration in the bonded region. Nevertheless, they may suffer due to the presence of defects in bond line and at the interface or due to improper curing process. While defects like voids, cracks and delaminations present in the adhesive bond line may be detected using different NDE methods, interfacial defects in the form of kissing bond may go undetected. Attempts using advanced ultrasonic methods like nonlinear ultrasound and guided wave inspection to detect kissing bond have met with limited success stressing the need for alternate methods. This paper concerns the preliminary studies carried out on detectability of dry contact kissing bonds in adhesive joints using the Digital Image Correlation (DIC) technique. In this attempt, adhesive joint samples containing varied area of kissing bond were prepared using the glass fiber reinforced composite (GFRP) as substrates and epoxy resin as the adhesive layer joining them. The samples were also subjected to conventional and high power ultrasonic inspection. Further, these samples were loaded till failure to determine the bond strength during which digital images were recorded and analyzed using the DIC method. This noncontact method could indicate the existence of kissing bonds at less than 50% failure load. Finite element studies carried out showed a similar trend. Results obtained from these preliminary studies are encouraging and further tests need to be done on a larger set of samples to study experimental uncertainties and scatter associated with the method. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Medical image segmentation finds application in computer-aided diagnosis, computer-guided surgery, measuring tissue volumes, locating tumors, and pathologies. One approach to segmentation is to use active contours or snakes. Active contours start from an initialization (often manually specified) and are guided by image-dependent forces to the object boundary. Snakes may also be guided by gradient vector fields associated with an image. The first main result in this direction is that of Xu and Prince, who proposed the notion of gradient vector flow (GVF), which is computed iteratively. We propose a new formalism to compute the vector flow based on the notion of bilateral filtering of the gradient field associated with the edge map - we refer to it as the bilateral vector flow (BVF). The range kernel definition that we employ is different from the one employed in the standard Gaussian bilateral filter. The advantage of the BVF formalism is that smooth gradient vector flow fields with enhanced edge information can be computed noniteratively. The quality of image segmentation turned out to be on par with that obtained using the GVF and in some cases better than the GVF.
Resumo:
We have benchmarked the maximum obtainable recognition accuracy on five publicly available standard word image data sets using semi-automated segmentation and a commercial OCR. These images have been cropped from camera captured scene images, born digital images (BDI) and street view images. Using the Matlab based tool developed by us, we have annotated at the pixel level more than 3600 word images from the five data sets. The word images binarized by the tool, as well as by our own midline analysis and propagation of segmentation (MAPS) algorithm are recognized using the trial version of Nuance Omnipage OCR and these two results are compared with the best reported in the literature. The benchmark word recognition rates obtained on ICDAR 2003, Sign evaluation, Street view, Born-digital and ICDAR 2011 data sets are 83.9%, 89.3%, 79.6%, 88.5% and 86.7%, respectively. The results obtained from MAPS binarized word images without the use of any lexicon are 64.5% and 71.7% for ICDAR 2003 and 2011 respectively, and these values are higher than the best reported values in the literature of 61.1% and 41.2%, respectively. MAPS results of 82.8% for BDI 2011 dataset matches the performance of the state of the art method based on power law transform.
Resumo:
A new technique is proposed for multisensor image registration by matching the features using discrete particle swarm optimization (DPSO). The feature points are first extracted from the reference and sensed image using improved Harris corner detector available in the literature. From the extracted corner points, DPSO finds the three corresponding points in the sensed and reference images using multiobjective optimization of distance and angle conditions through objective switching technique. By this, the global best matched points are obtained which are used to evaluate the affine transformation for the sensed image. The performance of the image registration is evaluated and concluded that the proposed approach is efficient.
Resumo:
Flood is one of the detrimental hydro-meteorological threats to mankind. This compels very efficient flood assessment models. In this paper, we propose remote sensing based flood assessment using Synthetic Aperture Radar (SAR) image because of its imperviousness to unfavourable weather conditions. However, they suffer from the speckle noise. Hence, the processing of SAR image is applied in two stages: speckle removal filters and image segmentation methods for flood mapping. The speckle noise has been reduced with the help of Lee, Frost and Gamma MAP filters. A performance comparison of these speckle removal filters is presented. From the results obtained, we deduce that the Gamma MAP is reliable. The selected Gamma MAP filtered image is segmented using Gray Level Co-occurrence Matrix (GLCM) and Mean Shift Segmentation (MSS). The GLCM is a texture analysis method that separates the image pixels into water and non-water groups based on their spectral feature whereas MSS is a gradient ascent method, here segmentation is carried out using spectral and spatial information. As test case, Kosi river flood is considered in our study. From the segmentation result of both these methods are comprehensively analysed and concluded that the MSS is efficient for flood mapping.
Resumo:
The high level of public accountability attached to Public Sector Enterprises as a result of public ownership makes them socially responsible. The Committee of Public Undertakings in 1992 examined the issue relating to social obligations of Central Public Sector Enterprises and observed that ``being part of the `State', every Public Sector enterprise has a moral responsibility to play an active role in discharging the social obligations endowed on a welfare state, subject to the financial health of the enterprise''. It issued the Corporate Social Responsibility Guidelines in 2010 where all Central Public Enterprises, through a Board Resolution, are mandated to create a CSR budget as a specified percentage of net profit of the previous year. This paper examines the CSR activities of the biggest engineering public sector organization in India, Bharath Heavy Electricals Limited. The objectives are twofold, one, to develop a case study of the organization about the funds allocated and utilized for various CSR activities, and two, to examine its status with regard to other organizations, the 2010 guidelines, and the local socio-economic development. Secondary data analysis results show three interesting trends. One, it reveals increasing organizational social orientation with the formal guidelines in place. Two, Firms can no longer continue to exploit environmental resources and escape from their responsibilities by acting separate entities regardless of the interest of the society and Three the thrust of CSR in public sector is on inclusive growth, sustainable development and capacity building with due attention to the socio-economic needs of the neglected and marginalized sections of the society.
Resumo:
Typical image-guided diffuse optical tomographic image reconstruction procedures involve reduction of the number of optical parameters to be reconstructed equal to the number of distinct regions identified in the structural information provided by the traditional imaging modality. This makes the image reconstruction problem less ill-posed compared to traditional underdetermined cases. Still, the methods that are deployed in this case are same as those used for traditional diffuse optical image reconstruction, which involves a regularization term as well as computation of the Jacobian. A gradient-free Nelder-Mead simplex method is proposed here to perform the image reconstruction procedure and is shown to provide solutions that closely match ones obtained using established methods, even in highly noisy data. The proposed method also has the distinct advantage of being more efficient owing to being regularization free, involving only repeated forward calculations. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
In order to reduce the motion artifacts in DSA, non-rigid image registration is commonly used before subtracting the mask from the contrast image. Since DSA registration requires a set of spatially non-uniform control points, a conventional MRF model is not very efficient. In this paper, we introduce the concept of pivotal and non-pivotal control points to address this, and propose a non-uniform MRF for DSA registration. We use quad-trees in a novel way to generate the non-uniform grid of control points. Our MRF formulation produces a smooth displacement field and therefore results in better artifact reduction than that of registering the control points independently. We achieve improved computational performance using pivotal control points without compromising on the artifact reduction. We have tested our approach using several clinical data sets, and have presented the results of quantitative analysis, clinical assessment and performance improvement on a GPU. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We propose and experimentally demonstrate a three-dimensional (3D) image reconstruction methodology based on Taylor series approximation (TSA) in a Bayesian image reconstruction formulation. TSA incorporates the requirement of analyticity in the image domain, and acts as a finite impulse response filter. This technique is validated on images obtained from widefield, confocal laser scanning fluorescence microscopy and two-photon excited 4pi (2PE-4pi) fluorescence microscopy. Studies on simulated 3D objects, mitochondria-tagged yeast cells (labeled with Mitotracker Orange) and mitochondrial networks (tagged with Green fluorescent protein) show a signal-to-background improvement of 40% and resolution enhancement from 360 to 240 nm. This technique can easily be extended to other imaging modalities (single plane illumination microscopy (SPIM), individual molecule localization SPIM, stimulated emission depletion microscopy and its variants).
Resumo:
Imaging thick specimen at a large penetration depth is a challenge in biophysics and material science. Refractive index mismatch results in spherical aberration that is responsible for streaking artifacts, while Poissonian nature of photon emission and scattering introduces noise in the acquired three-dimensional image. To overcome these unwanted artifacts, we introduced a two-fold approach: first, point-spread function modeling with correction for spherical aberration and second, employing maximum-likelihood reconstruction technique to eliminate noise. Experimental results on fluorescent nano-beads and fluorescently coated yeast cells (encaged in Agarose gel) shows substantial minimization of artifacts. The noise is substantially suppressed, whereas the side-lobes (generated by streaking effect) drops by 48.6% as compared to raw data at a depth of 150 mu m. Proposed imaging technique can be integrated to sophisticated fluorescence imaging techniques for rendering high resolution beyond 150 mu m mark. (C) 2013 AIP Publishing LLC.
Resumo:
The demand for energy efficient, low weight structures has boosted the use of composite structures assembled using increased quantities of structural adhesives. Bonded structures may be subjected to severe working environments such as high temperature and moisture due to which the adhesive gets degraded over a period of time. This reduces the strength of a joint and leads to premature failure. Measurement of strains in the adhesive bondline at any point of time during service may be beneficial as an assessment can be made on the integrity of a joint and necessary preventive actions may be taken before failure. This paper presents an experimental approach of measuring peel and shear strains in the adhesive bondline of composite single-lap joints using digital image correlation. Different sets of composite adhesive joints with varied bond quality were prepared and subjected to tensile load during which digital images were taken and processed using digital image correlation software. The measured peel strain at the joint edge showed a rapid increase with the initiation of a crack till failure of the joint. The measured strains were used to compute the corresponding stresses assuming a plane strain condition and the results were compared with stresses predicted using theoretical models, namely linear and nonlinear adhesive beam models. A similar trend in stress distribution was observed. Further comparison of peel and shear strains also exhibited similar trend for both healthy and degraded joints. Maximum peel stress failure criterion was used to predict the failure load of a composite adhesive joint and a comparison was made between predicted and actual failure loads. The predicted failure loads from theoretical models were found to be higher than the actual failure load for all the joints.
Resumo:
Fluorescence microscopy has become an indispensable tool in cell biology research due its exceptional specificity and ability to visualize subcellular structures with high contrast. It has highest impact when applied in 4D mode, i.e. when applied to record 3D image information as a function of time, since it allows the study of dynamic cellular processes in their native environment. The main issue in 4D fluorescence microscopy is that the phototoxic effect of fluorescence excitation gets accumulated during 4D image acquisition to the extent that normal cell functions are altered. Hence to avoid the alteration of normal cell functioning, it is required to minimize the excitation dose used for individual 2D images constituting a 4D image. Consequently, the noise level becomes very high degrading the resolution. According to the current status of technology, there is a minimum required excitation dose to ensure a resolution that is adequate for biological investigations. This minimum is sufficient to damage light-sensitive cells such as yeast if 4D imaging is performed for an extended period of time, for example, imaging for a complete cell cycle. Nevertheless, our recently developed deconvolution method resolves this conflict forming an enabling technology for visualization of dynamical processes of light-sensitive cells for durations longer than ever without perturbing normal cell functioning. The main goal of this article is to emphasize that there are still possibilities for enabling newer kinds of experiment in cell biology research involving even longer 4D imaging, by only improving deconvolution methods without any new optical technologies.
Resumo:
The sparse recovery methods utilize the l(p)-normbased regularization in the estimation problem with 0 <= p <= 1. These methods have a better utility when the number of independent measurements are limited in nature, which is a typical case for diffuse optical tomographic image reconstruction problem. These sparse recovery methods, along with an approximation to utilize the l(0)-norm, have been deployed for the reconstruction of diffuse optical images. Their performancewas compared systematically using both numerical and gelatin phantom cases to show that these methods hold promise in improving the reconstructed image quality.
Resumo:
This paper discusses an approach for river mapping and flood evaluation to aid multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation to extract water covered region. Analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images is applied in two stages: before flood and during flood. For these images the extraction of water region utilizes spectral information for image classification and spatial information for image segmentation. Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as artificial neural networks and gene expression programming to separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water region. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification and region-based segmentation is an accurate and reliable for the extraction of water-covered region.
Resumo:
Simulated boundary potential data for Electrical Impedance Tomography (EIT) are generated by a MATLAB based EIT data generator and the resistivity reconstruction is evaluated with Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS). Circular domains containing subdomains as inhomogeneity are defined in MATLAB-based EIT data generator and the boundary data are calculated by a constant current simulation with opposite current injection (OCI) method. The resistivity images reconstructed for different boundary data sets and images are analyzed with image parameters to evaluate the reconstruction.