935 resultados para Cooking (Tofu)
Resumo:
There is still discussion regarding whether liquid biofuels can contribute to rural energy security in the global South. We argue that transitioning to a village energy supply based on jatropha hedges around smallholder plots is possible, but requires collective effort for the acquisition and maintenance of processing equipment and for the running of village generators. The use of jatropha oil for lighting in rural households is affordable and technically possible, but not ideal if more efficient electric solutions exist. Cooking with jatropha oil or press cake is also possible, but quantities produced in hedges can only substitute a small part of the firewood used by rural households.
Resumo:
Four seasons of excavations at Horvat Kur in the Galilee (250570/754485) have exposed the remains of a broadhouse synagogue from the Byzantine period. The building was entered through a portico on the west or a doorway on the south. The fill beneath the portico included the discarded remains of a once colored mosaic as well as more than 1000 coins. A low bench of basalt stones (some of which were plastered) runs along the interior walls, interrupted only by a stone bemah in the center of the southern wall. The synagogue is thus oriented toward Jerusalem. Near the bemah, an ornamented limestone seat was found in situ atop the bench. The building underwent several changes and repairs in the course of its lifespan. On either side of the bemah, north-south rows of columns rested on stylobate. A basalt stone table was found in re-use in the eastern stylobate. Nicknamed “the Horvat Kur stone,” this monolith features geometric figures on three sides and figurative representations on one side. Its original function is as yet subject of research. A narrow test-trench into the sediment of a cistern located outside the northern wall of the synagogue has produced nearly thirty intact vessels of the early Byzantine period, mostly cooking pots and water jars. In addition a dense sequence of pollen samples has been taken. Preliminary interpretation of these finds indicates that the Horvat Kur synagogue illustrates Byzantine synagogue construction, decoration, and use in the setting of a Galilean village of modest economic circumstances.
Resumo:
Preliminary archaeological and palynological results are presented from an early Byzantine cistern of the village Horvat Kur in eastern Lower Galilee/Israel. The rural site was settled from the Hellenistic until the Early Arab period, its synagogue was constructed shortly after 425 AD and renovated sometimes during the 2nd half of the 6th century AD. It was abandoned probably as a consequence of the earthquake of 749 AD. The intact and properly sealed cistern contained complete or fully restorable pottery. Two cooking pots from the early 5th century AD comprised sediments which was sampled for palynological purposes. Both samples, as well as a sample from the soil beneath one of the pots and a modern surface sample from the site, revealed well preserved palynomorphs in comparably high concentration showing a great potential of the cistern as a pollen archive. The pollen content points to an open, grassy semiarid landscape with an apparent scarcity of cultivars and trees in the vicinity of the site and an abundance of herbs, especially Asteraceae, which are still commonly found in modern regional vegetation.
Resumo:
High-resolution chemical records from an 80.4 m ice core from the central Himalaya demonstrate climatic and environmental changes since 1844. The chronological net accumulation series shows a sharp decrease from the mid-1950s, which is coincident with the widely observed glacier retreat. A negative correlation is found between the ice-core delta(18)O record and the monsoon precipitation for Indian region 7. The temporal variation of the terrestrial ions (Ca2+ and Mg2+) is controlled by both the monsoon precipitation for Indian regions 3,7 and 8, located directly south and west of the Himalaya, and the dust-storm duration and frequency in the northern arid regions, such as the Taklimakan desert, China. The NH4+ profile is fairly flat until the 1940s, then substantially increases until the end of the 1980s, with a slight decrease during the 1990s which may reflect new agricultural practices. The SO42- and NO3- profiles show an apparent increasing trend, especially during the period 1940s-80s. Moreover, SO42- concentrations for the East Rongbuk Glacier core are roughly double that of the nearby Dasuopu core at Xixabangma, Himalaya, due to local human activity including that of climbing teams who use gasoline for cooking, energy and transport.
Resumo:
DAURE (Determination of the Sources of Atmospheric Aerosols in Urban and Rural Environments in the Western Mediterranean) was a multidisciplinary international field campaign aimed at investigating the sources and meteorological controls of particulate matter in the Western Mediterranean Basin (WMB). Measurements were simultaneously performed at an urban-coastal (Barcelona, BCN) and a rural-elevated (Montseny, MSY) site pair in NE Spain during winter and summer. State-of-the-art methods such as 14C analysis, proton-transfer reaction mass spectrometry, and high-resolution aerosol mass spectrometry were applied for the first time in the WMB as part of DAURE. WMB regional pollution episodes were associated with high concentrations of inorganic and organic species formed during the transport to inland areas and built up at regional scales. Winter pollutants accumulation depended on the degree of regional stagnation of an air mass under anticyclonic conditions and the planetary boundary layer height. In summer, regional recirculation and biogenic secondary organic aerosols (SOA) formation mainly determined the regional pollutant concentrations. The contribution from fossil sources to organic carbon (OC) and elemental carbon (EC) and hydrocarbon-like organic aerosol concentrations were higher at BCN compared with MSY due to traffic emissions. The relative contribution of nonfossil OC was higher at MSY especially in summer due to biogenic emissions. The fossil OC/EC ratio at MSY was twice the corresponding ratio at BCN indicating that a substantial fraction of fossil OC was due to fossil SOA. In winter, BCN cooking emissions were identified as an important source of modern carbon in primary organic aerosol.
Resumo:
Radiocarbon (14C) analysis is a unique tool to distinguish fossil/nonfossil sources of carbonaceous aerosols. We present 14C measurements of organic carbon (OC) and total carbon (TC) on highly time resolved filters (3–4 h, typically 12 h or longer have been reported) from 7 days collected during California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 in Pasadena. Average nonfossil contributions of 58% ± 15% and 51% ± 15% were found for OC and TC, respectively. Results indicate that nonfossil carbon is a major constituent of the background aerosol, evidenced by its nearly constant concentration (2–3 μgC m−3). Cooking is estimated to contribute at least 25% to nonfossil OC, underlining the importance of urban nonfossil OC sources. In contrast, fossil OC concentrations have prominent and consistent diurnal profiles, with significant afternoon enhancements (~3 μgC m−3), following the arrival of the western Los Angeles (LA) basin plume with the sea breeze. A corresponding increase in semivolatile oxygenated OC and organic vehicular emission markers and their photochemical reaction products occurs. This suggests that the increasing OC is mostly from fresh anthropogenic secondary OC (SOC) from mainly fossil precursors formed in the western LA basin plume. We note that in several European cities where the diesel passenger car fraction is higher, SOC is 20% less fossil, despite 2–3 times higher elemental carbon concentrations, suggesting that SOC formation from gasoline emissions most likely dominates over diesel in the LA basin. This would have significant implications for our understanding of the on-road vehicle contribution to ambient aerosols and merits further study.
Resumo:
Determining the contribution of wood smoke to air pollution in large cities such as London is becoming increasingly important due to the changing nature of domestic heating in urban areas. During winter, biomass burning emissions have been identified as a major cause of exceedances of European air quality limits. The aim of this work was to quantify the contribution of biomass burning in London to concentrations of PM2:5 and determine whether local emissions or regional contributions were the main source of biomass smoke. To achieve this, a number of biomass burning chemical tracers were analysed at a site within central London and two sites in surrounding rural areas. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and K+ were generally well correlated across the three sites. At all the sites, biomass burning was found to be a source of OC and EC, with the largest contribution of EC from traffic emissions, while for OC the dominant fraction included contributions from secondary organic aerosols, primary biogenic and cooking sources. Source apportionment of the EC and OC was found to give reasonable estimation of the total carbon from non-fossil and fossil fuel sources based upon comparison with estimates derived from 14C analysis. Aethalometer-derived black carbon data were also apportioned into the contributions frombiomass burning and traffic and showed trends similar to those observed for EC. Mean wood smoke mass at the sites was estimated to range from 0.78 to 1.0 μgm-3 during the campaign in January–February 2012. Measurements on a 160m tower in London suggested a similar ratio of brown to black carbon (reflecting wood burning and traffic respectively) in regional and London air. Peaks in the levoglucosan and K+ concentrations were observed to coincide with low ambient temperature, consistent with domestic heating as a major contributing local source in London. Overall, the source of biomass smoke in London was concluded to be a background regional source overlaid by contributions from local domestic burning emissions. This could have implications when considering future emission control strategies during winter and may be the focus of future work in order to better determine the contributing local sources.
Resumo:
This paper presents an indicator for measuring multidimensional poverty in the Lao People’s Democratic Republic applying the Alkire–Foster methodology to the Lao Expenditure and Consumption Survey 2002/2003 and 2007/2008. We calculated a multidimensional poverty index (MPI) that includes three dimensions: education, health, and standard of living. Making use of the MPI’s decomposability, we analyse how much each of the different dimensions and its respective indicators contribute to the overall MPI. We find a marked reduction in the multidimensional poverty headcount ratio over the study period, regardless of how the indicators are weighted or how the deprivation and poverty cut-offs are set. This reduction is based on improvements regarding all indicators except cooking fuel and nutrition. We observe no significant reduction in the intensity of poverty, however; there are wide disparities between the country’s regions and between urban and rural areas. The proportion of poor people in rural areas is more than twice as high as that in urban areas. By complementing the traditional income-based poverty measure, we hope to provide useful information that can support knowledge-based decision-making for poverty alleviation.
Resumo:
Four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model–measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model–measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16–27, 35–61, and 19–35 %, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(+-3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μgm-3 is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr-1 of SOA globally, or 17% of global SOA, one third of which is likely to be non-fossil.
Resumo:
Despite an increased scientific interest in the relatively new phenomenon of large-scale land acquisition (LSLA), data on the implementation of such projects and their impacts on the heterogeneous group of project-affected people are still sparse and superficial. Our ethnographic in-depth research on a Swiss-based bioenergy project in Sierra Leone generates well-documented data and provides insights into gendered access to land and wage employment. In the area where the project is located, customary land tenure applies. Thereby, women are structurally discriminated since they are not entitled to own land. However, user rights grant women and non-landowning men access to land and associated resources. Following the investing development banks’ guidelines, the company considered the local customary law when implementing its project. Nevertheless, the company only consulted and compensated landowners although women and non-landowning men could previously benefit from acquired land as well. Moreover, the company’s policy to enhance employment possibilities for women is barely implemented, and only few local women are hired. In order to cope with the transformed situation some women and non-landowning men continue to engage in subsistence farming on a reduced area of land. Others are involved in informal petty-trade or cooking food for the labourers whereby they subsidize the capitalist production of the company. In one village, women resisted additional land takes of the company. Acting within the framework of a specific power constellation on community level and simultaneously accommodating their claims within policy paradigms on transnational level, they were able to force a landowner to refuse leasing land to the company.
Resumo:
In many parts of the eastern African region wood-based fuels will remain dominant sources of energy in coming decades. Pressure on forests, especially in semi-arid areas will therefore continue increasing. In this context, the role of liquid biofuels as substitutes for firewood and charcoal, to help reducing pressure on woody biomass and contributing to a better energy security of rural communities, has remained controversial among researchers and practitioners. At household level, the economic and technical feasibility of straight vegetable oil (SVO) was assessed mainly on Jatropha curcas, with unpersuasive results. So far nothing is known about the suitability as an energy carrier of Jatropha mahafalensis Jum. & H. Perrier, the only endemic representative of the Jatropha genus in Madagascar. This paper explores the potential of this plant as a biofuel feedstock in the agro-pastoral area of Soalara, in the semi-arid south-western part of Madagascar. Only hedge-based production was considered to rule out competition over land with food crops. Yield data, the length of currently existing hedges and energy consumption patterns of households were used to assess the quantitative potential and economic viability of J. mahafalensis SVO for lighting and cooking. Tests were conducted with cooking and lighting devices to assess their technical suitability at household level. The paper concludes that J. mahafalensis hedges have some potential to replace paraffin for lighting (though without much economic benefit for the concerned households), but not to replace charcoal or firewood for cooking. The paper recommends that rural energy strategies in similar contexts do not focus only on substituting current fuels with SVO, but should also take into consideration other alternatives. In the case of cooking, there seems to be substantially more potential in increasing the efficiency of current fuel production and consumption technologies (kilns and stoves); and in the case of lighting, solutions based on SVO need to be compared against other options such as portable solar devices.
Resumo:
A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70% of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20%in winter and 40%in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.
Resumo:
The so-called Dutch Pranketing Room of Alethea Talbot, Countess of Arundel, at Tart Hall was a site of domestic experiments, courtly splendour and global ambition. Lady Arundel, the probable author of a famous recipe book, would have used Tart Hall for cooking and experiments as well as for impressive dinner parties, and she would have used large amounts of sugar to create intricate imitations of meat and vegetables to astonish, entertain and delight her guests. Linking household practice with global trade as well as artistic creation, Lady Arundel’s banquets are situated not only between a national tradition of cooking, as it appears in Markham’s manuals, and the new possibilities the arising global trade provided, but also played with a mismatch between taste and sight. This mediating role could be compared to that played by the artists the Countess employed. Within this context it is worth noting that a series of paintings displayed in the building’s gallery showed still lifes, markets, and a cook. The inventory of Tart Hall gives an insight into the world of the widely travelled collector and patron of Van Dyck and Rubens, but raises also a number of questions. In my talk I would like to explore the Countess’ Pranketing Room as a site of mediation between alimentary and painterly experiments, considering the use of recipes, experience, invention and transformation
Resumo:
Breast cancer is the most common cancer in women in the United States and is a leading cause of cancer-related deaths (1). Recently, dietary heterocyclic amines (HCAs) have been proposed to be a risk factor for breast cancer (2). This study uses the data collected for a case-control study conducted at the M.D. Anderson Cancer Center to assess the association between breast cancer risk and HCAs {2-amino-1-methyl-6-phenylimidazole [4,5-b] pyridine (PhIP), 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo [4,5-f] quinoxaline (DiMeIQx) and mutagenicity of HCAs} and to examine if this association is modified by genetic polymorphisms of N-acetyl transferases (NAT1/NAT2). The NAT1/2 genotype was determined using Taqman technology. HCAs were estimated by using a meat preparation questionnaire on meat type, cooking method, and doneness, combined with a quantitative HCA database. Three hundred and fifty patients with breast cancer attending the Diagnostic Radiology Clinic at M. D. Anderson Cancer Center and fulfilling the eligibility criteria were compared to three hundred and fifty patients attending the same clinic for benign breast lesions to answer these questions. Logistic regression models were used to control for known risk factors and showed no statistically significant association between breast cancer versus benign breast cancer lesions and dietary intake of heterocyclic amines. There was no clear difference in their effect after subgroup analyses in different acetylator strata of NAT1/2 and no statistical interactions were found between NAT1/2 genotypes and HCAs, suggesting no effect modification by NAT1/2 acetylator status. These results suggest the need for further research to analyze if these null associations were because of the benign breast lesions sharing the risk factors with breast cancer or any other factors which haven't been explored yet.^
Resumo:
Existing literature examining the association between occupation and asthma has not been adequately powered to address this question in the food preparation or food service industries. Few studies have addressed the possible link between occupational exposure to cooking fumes and asthma. This secondary analysis of cohort study data aimed to investigate the association between adult-onset asthma and exposure to: (a) cooking fumes at work or (b) longest-held employment in food preparation or food service (e.g. waiters and waitresses, food preparation workers, non-restaurant food servers, etc.). Participants arose from a cohort of Mexican-American women residing in Houston, TX, recruited between July 2001 and June 2007. This analysis used Cox proportional-hazards regression to estimate the hazard ratio of adult-onset asthma given the exposures of interest, adjusting for age, BMI, smoking status, acculturation, and birthplace. We found a strong association between adult-onset asthma and occupational exposure to cooking fumes (hazard ratio [HR] = 1.77; 95% confidence interval [CI], 1.15, 2.72), especially in participants whose longest-held occupation was not in the food-related industry (HR = 2.12; 95% CI, 1.21, 3.60). In conclusion, adult-onset asthma is a serious public health concern for food industry workers. ^