978 resultados para Constant pressure sprayer
Resumo:
Photoluminescence and Raman scattering experiments have been carried out on single crystals of C70 up to 31 GPa to investigate the effect of pressure on the optical band gap, vibrational modes and stability of the molecule. The photoluminescence band shifts to lower energies and the pressure dependence of the band maxima yields the hydrostatic deformation potential to be 2.15 eV. The slope changes in the pressure dependence of peak positions and linewidths of the Raman modes associated with the intramolecular vibrations at 1 GPa mark the known face-centred cubic-->rhombohedral orientational ordering transition. The reversible amorphization in C70 at P > 20 GPa has been compared with the irreversible amorphization in C60 at P > 22 GPa in terms of carbon-carbon distance between the neighbouring molecules at the threshold transition pressures, in conjunction with the interplay between the intermolecular and intramolecular interactions.
Resumo:
Polycrystalline SrTiO3 films were prepared by pulsed excimer laser ablation on Si and Pt coated Si substrates. Several growth parameters were varied including ablation fluence, pressure, and substrate temperature. The structural studies indicated the presence of [100] and [110] oriented growth after annealing by rapid thermal annealing at 600-degrees-C for 60 s. Deposition at either lower pressures or at higher energy densities encouraged film growth with slightly preferred orientation. The scanning electron microscopy studies showed the absence of any significant particulates on the film surface. Dielectric studies indicated a dielectric constant of 225, a capacitance density of 3.2 fF/mum2, and a charge density of 40 fC/mum for films of 1000 nm thick. The dc conductivity studies on these films suggested a bulk limited space charge conduction in the high field regime, while the low electric fields induced an ohmic conduction. Brief time dependent dielectric breakdown studies on these films, under a field of 250 kV/cm for 2 h, did not exhibit any breakdown, indicating good dielectric strength.
Resumo:
Surface flashover characteristics of solid spacers in a rod-plane configuration have been investigated in SF6, at pressures to 400 kPa, for switching impulse voltages to determine the effect of spacer, spacer materials and polarity of applied impulses. The effect of spacer material on the flashover voltage is not significant. For negative polarity impulses, the influence of the spacer is also insignificant. But for positive polarity impulses, at pressures < 200 kPa, the spacer efficiency becomes > 1.0. On the other hand, at pressures > 200 kPa, the presence of spacer drastically reduces the flashover voltage of the system. At about atmospheric pressure also, the spacer efficiency in air has been found to be > 1.0, with the same electrode geometry.
High-pressure synchrotron X-ray diffraction study of the pyrochlores: Ho2Ti2O7, Y2Ti2O7 and Tb2Ti2O7
Resumo:
Synchrotron-based X-ray diffraction was used to study the phase diagrams and determine the compressibilities of the pyrochlore rare-earth titanates Ho2Ti2O7, Y2Ti2O7 and Tb2Ti2O7 to 50GPa. The bulk moduli of the cubic phase of these materials were calculated to be 213 +/- 2, 204 +/- 3 and 199 +/- 1GPa, respectively. The onset of a structural phase change from cubic to monoclinic was observed near 37, 42 and 39GPa, respectively. The bulk modulus for the high pressure monoclinic phase of Y2Ti2O7 has been determined to be 185 +/- 3GPa.
Leak Detection In Pressure Tubes Of A Pressurized Heavy-Water Reactor By Acoustic-Emission Technique
Resumo:
Leak detection in the fuel channels is one of the challenging problems during the in-service inspection (ISI) of Pressurised Heavy Water Reactors (PHWRs). In this paper, the use of an acoustic emission (AE) technique together with AE signal analysis is described, to detect a leak that was ncountered in one (or more) of the 306 fuel channels of the Madras Atomic Power Station (PHWR), Unit I. The paper describes the problems encountered during the ISI, the experimental methods adopted and the results obtained. Results obtained using acoustic emission signal analysis are compared with those obtained from other leak detection methods used in such cases.
Resumo:
A 6 X 6 transfer matrix is presented to evaluate the response of a multi-layer infinite plate to a given two-dimensional pressure excitation on one of its faces or, alternatively, to evaluate the acoustic pressure distribution excited by the normal velocity components of the radiating surfaces. It is shown that the present transfer matrix is a general case embodying the transfer matrices of normal excitation and one-dimensional pressure excitation due to an oblique incident wave. It is also shown that the present transfer matrix obeys the necessary checks to categorize the physically symmetric multi-layer plate as dynamically symmetric. Expressions are derived to obtain the wave propagation parameters, such as the transmission, absorption and reflection coefficients, in terms of the elements of the transfer matrix presented. Numerical results for transmission loss and reflection coefficients of a two-layer configuration are presented to illustrate the effect of angles of incidence, layer characteristics and ambient media.
Resumo:
Hydrolytic polymerization of caprolactam to Nylon 6 in a semibatch reactor is carried out by heating a mixture of water and caprolactam. Evaporation of volatiles caused by heating results in a pressure build-up. After the pressure reaches a predetermined value, vapors are vented to keep the pressure constant for some time, and thereafter, to lower the pressure to a value slightly above atmospheric in a preprogrammed manner. The characteristics of the polymer are determined by the chemical reactions and the vaporization of water and caprolactam. The semibatch operation has been simulated and the predictions have been compared with industria data. The observed temperature and pressure histories were predicted with a fair degree of accuracy. It was found that the predictions of the degree of polymerization however are sensitive to the vapor-liquid equilibrium relations. A comparison with an earlier model, which neglected mass transfer resistance, indicates that simulation using the VLE data of Giori and Hayes and accounting for mass transfer resistance is more reliable.
Resumo:
Electrical resistivity measurements have been carried out on bulk Ge-Te-Se glasses in a Bridgman anvil System. The resistivity of the Ge-Te-Se samples is found to decrease continuously with increasing pressure, with the metallization occurring around 8 GPa. Ge20TexSe80-x glasses (10 less than or equal to x less than or equal to 50) with the mean co-ordination number Z(av) = 2.4 exhibit a plateau in resistivity up to about 4 GPa pressure, followed by a continuous decrease to metallic values. On the other hand, Ge10TexSe90-x glasses (10 less than or equal to x less than or equal to 40) having Z(av) = 2.2, exhibit a smaller plateau (only up to 1 GPa), followed by a decrease in resistivity with pressure. This subtle difference in the high pressure resistivity of Ge-Te-Se glasses with Z(av) < 2.4 and Z(av) greater than or equal to 2.4 can be associated with the changes in the local structure of the chalcogenide glasses with composition.
Resumo:
High pressure Raman scattering studies have been carried out on cesium periodate (CsIO4) using the diamond anvil cell. Three pressure-induced phase transitions occur in the range 0.1�12 GPa as indicated by abrupt changes in the Raman spectra, and pressure dependence of the phonon frequencies. The transitions are observed at 1.5, 4.5 and 6.2 GPa in the increasing pressure cycle. A large hysteresis is noticed for the reverse transition when releasing the pressure. The high pressure phase is nearly quenchable to ambient pressure. The nature of the pressure-induced transitions are discussed in terms of the sequence of pressure-induced transitions expected for scheelite-pseudoscheelite structure ABO4 compounds from crystal chemical considerations. For the softening of the two high frequency internal modes, a pressure-induced electronic change involving the 5 d states of cesium and 5 p states of iodine is invoked.
Resumo:
A differential pressure transducer with sputtered gold films as strain gauges has been designed and fabricated. The construction details of the sensing element assembly are given. The details of the strain gauge film configuration employed and the thin-film deposition process are also presented. Information on the output characteristics of the differential pressure transducer such as effect of pressure cycles on output, thermal stability, bidirectional calibration results obtained and individual gauge stability is reported.
Resumo:
Sliding of alumina (87%) pins against a hardened steel disk over a range of pressures (3.3-30.0 MPa) and speeds (0.1-12.0 ms(-1)) has been studied. Four different regions (R1, R2, R3, and R4) of friction as a function of speed have been identified. R1 and RS exhibit single-valued friction while in R2 and R4 the friction exhibits dual behavior. The speed range over which these regions prevail is sensitive to the pressure. R1 and R2 are low-speed and low-temperature regions, and in both, metal transfer and formation and compaction of gamma-Fe2O3 occur. R3 and R4 are associated with high speeds and high interface temperatures. Formation of FeO, FeAl2O4, and FeAlO3 has been observed. The implications of the tribochemical interactions on friction and wear characteristics are discussed.
Resumo:
Raman experiments have been carried out on single crystals of BaTiO3 as a function of pressure up to 3.5 GPa across the ferroelectric (tetragonal) to paraelectric (cubic) phase transition. The unusual features in the Raman spectra associated with the interference effects due to coupling of the three A1(TO) phonons are studied quantitatively to obtain the pressure dependence of the line shape parameters and the coupling constants. The frequencies of the middle and highest-frequency modes as well as the linewidth of the middle mode show interesting pressure dependence.
Resumo:
Scanning tunneling microscopy of solid films of C-60 and C-70 clearly demonstrate the occurrence of photochemical polymerization of these fullerenes in the solid state. X-ray diffraction studies show that such a polymerization is accompanied by contraction of the unit-cell volume in the case of C-60 and expansion in the case of C-70. This is also evidenced from the STM images. These observations help to understand the differences in the amorphization behavior of C-60 and C-70 under pressure. Amorphization of C-60 under pressure is irreversible because it is accompanied by polymerization associated with a contraction of the unit cell volume. Monte Carlo simulations show how pressure-induced polymerization is favored in C-60 because of proper orientation as well as the required proximity of the molecules. Amorphization of C-70, on the other hand, is reversible because C-70 is less compressible and polymerization is not favored under pressure.