996 resultados para Concentration technique
Resumo:
There has been an ardent interest in herbivore saliva due to its roles in inducing plant defenses and its impact on herbivore fitness. Two techniques are described that inhibit the secretion of labial saliva from the caterpillar, Helicoverpa zea, during feeding. The methods rely on cauterizing the caterpillar's spinneret, the principal secretory structure of the labial glands, or surgically removing the labial salivary gland. Both methods successfully inhibit secretion of saliva and the principal salivary enzyme glucose oxidase. Caterpillars with inhibited saliva production feed at similar rates as the untreated caterpillars, pupate, and emerge as adults. Glucose oxidase has been suggested to increase the caterpillar's survival through the suppression of inducible anti-herbivore defenses in plants. Tobacco (Nicotiana tabacum) leaves fed on by caterpillars with ablated salivary glands had significantly higher levels of nicotine, an inducible anti-herbivore defense compound of tobacco, than leaves fed upon by caterpillars with intact labial salivary glands. Tomato (Lycopersicon esculentum) leaves fed upon by caterpillars with suppressed salivary secretions showed greatly reduced evidence of hydrogen peroxide formation compared to leaves fed upon by intact caterpillars. These two methods are useful techniques for determining the role that saliva plays in manipulating plant anti-herbivore defenses.
Resumo:
Solid phase microextraction (SPME) has been widely used for many years in various applications, such as environmental and water samples, food and fragrance analysis, or biological fluids. The aim of this study was to suggest the SPME method as an alternative to conventional techniques used in the evaluation of worker exposure to benzene, toluene, ethylbenzene, and xylene (BTEX). Polymethylsiloxane-carboxen (PDMS/CAR) showed as the most effective stationary phase material for sorbing BTEX among other materials (polyacrylate, PDMS, PDMS/divinylbenzene, Carbowax/divinylbenzene). Various experimental conditions were studied to apply SPME to BTEX quantitation in field situations. The uptake rate of the selected fiber (75 microm PDMS/CAR) was determined for each analyte at various concentrations, relative humidities, and airflow velocities from static (calm air) to dynamic (> 200 cm/s) conditions. The SPME method also was compared with the National Institute of Occupational Safety and Health method 1501. Unlike the latter, the SPME approach fulfills the new requirement for the threshold limit value-short term exposure limit (TLV-STEL) of 2.5 ppm for benzene (8 mg/m(3))
Resumo:
Forty-seven plant extracts of 10 species of the genus Euphorbia (Euphorbiaceae) used by Colombian traditional healers for the treatment of ulcers, cancers, tumors, warts, and other diseases, were tested in vitro for their potential antitumour (antiproliferative and cytotoxic) and antiherpetic activity. To evaluate the capacity of the extracts to inhibit the lytic activity of herpes simplex virus type 2 (HSV-2) and the reduction of viability of infected or uninfected cell cultures, the end-point titration technique (EPTT) and the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric assay were used, respectively. The therapeutic index of the positive extracts for the antiviral activity was determined by calculating the ratio CC50 (50% cytotoxic concentration) over IC50 (50% inhibitory concentration of the viral effect). Five of the 47 extracts (11%) representing 3 out of 10 Euphorbia species (30%) exhibited antiherpetic action; the highest activity was found in the leaf/stem water-methanol extracts from E. cotinifolia and E. tirucalli. The therapeutic indexes of these two plant species were > 7.1; these extracts exhibited no cytotoxicity. Six extracts (13%) representing 4 plant species (40%) showed cytotoxic activity. The highest cytotoxicity was found in the dichloromethane extract obtained from E. cotinifolia leaves and the CC50 values for the most susceptible cell lines, HEp-2 and CHO, were 35.1 and 18.1 µg/ml, respectively.
Resumo:
PURPOSE: To investigate the feasibility of high-resolution selective three-dimensional (3D) magnetic resonance coronary angiography (MRCA) in the evaluation of coronary artery stenoses. MATERIALS AND METHODS: In 12 patients with coronary artery stenoses, MRCA of the coronary artery groups, including the coronary segments with stenoses of 50% or greater based on conventional x-ray coronary angiography (CAG), was performed with double-oblique imaging planes by orienting the 3D slab along the major axis of each right coronary artery-left circumflex artery (RCA-LCX) group and each left main trunk-left anterior descending artery (LMT-LAD) group. Ten RCA-LCX and five LMT-LAD MR angiograms were obtained, and the results were compared with those of conventional x-ray angiography. RESULTS: Among 70 coronary artery segments expected to be covered, a total of 49 (70%) segments were fully demonstrated in diagnostic quality. The identification of segmental location of stenoses showed as high an accuracy as 96%. The retrospective analysis for stenosis of 50% or greater yielded the sensitivity, specificity, and accuracy of 80%, 85%, and 84%, respectively. CONCLUSION: Selective 3D MRCA has the potential for segment-by-segment evaluation of major portions of the right and left coronary arteries with high accuracy.
Resumo:
Background: Urinary human chorionic gonadotropin (hCG) concentration is routinely measured in all anti-doping laboratories to exclude the misuse of recombinant or urinary hCG preparations. In this study, extended validation of two commercial immunoassays for hCG measurements in urine was performed. Both tests were initially designed for hCG determination in human serum/plasma. Methods: Access (R) and Elecsys (R) 1010 are two automated immunoanalysers for central laboratories. The limits of detection and quantification, as well as intra-laboratory and inter-technique correlation, precision, and accuracy, were determined. Stability studies of hCG in urine following freezing and thawing cycles (n = 3) as well as storage conditions at room temperature, 4 degrees C and 20 degrees C, were performed. Results: Statistical evaluation of hCG concentrations in male urine samples (n = 2429) measured with the Elecsys (R) 1010 system enabled us to draw a skewed frequency histogram and establish a far outside value equal to 2.3 IU/L. This decision limit corresponds to the concentration at which a sportsman will be considered positive for hCG. Intra-assay precision for the Access (R) analyser was less than 4.0 A, whereas the inter-assay precision was closer to 4.5 % (concentrations of the official external controls contained between 5.5 and 195.0 IU/L). Intra and inter-assay precision for the Elecsys (R) 1010 analyser was slightly better. A good inter-technique correlation was obtained when measuring various urine samples (male and female). No urinary hCG loss was observed after two freeze/thaw cycles. On the other hand, time and inappropriate storage conditions, such as temperatures above 10 degrees C for more than 5 days, can deteriorate urinary hCG. Conclusions: Both analysers showed acceptable performances and are suitable for screening urine for anti-doping analyses. Each laboratory should validate and establish its own reference values because hCG concentrations measured in urine can be different from one immunoassay to another. The time delay between urine collection and analysis should be reduced as much as possible, and urine samples should be transported in optimal conditions to avoid a loss of hCG immunoreactivity.
Resumo:
La majorité des organelles d'une cellule adaptent leur nombre et leur taille pendant les processus de division cellulaire, de trafic vésiculaire ou suite à des changements environnementaux par des processus de fusion et de fragmentation membranaires. Ceci est valable notamment pour le golgi, les mitochondries, les péroxisomes et les lysosomes. La vacuole est le compartiment terminal de la voie endocytaire dans la levure Saccharomyces cerevisiae\ elle correspond aux lysosomes des cellules mammifères. Suite à un choc hyperosmotique, la vacuole se fragmente en plusieurs petites vésicules. Durant ce projet, cette fragmentation a été étudiée en utilisant la technique de microscopie confocale in vivo. J'ai observé que la division de la vacuole se produit d'une façon asymétrique. La première minute après le choc osmotique, les vacuoles rétrécissent et forment des longues invaginations tubulaires. Cette phase est dépendante de la protéine Vps1, un membre de la famille des protéines apparentées à la dynamine, ainsi que d'un gradient transmembranaire de protons. Pendant les 10-15 minutes qui suivent, des vésicules se détachent dans les régions où l'on observe les invaginations pendant la phase initiale. Cette deuxième phase qui mène à la fission des nouveaux compartiments vacuolaires dépend de la production du lipide PI(3,5)P2 par la protéine Fab1. J'ai établi la suite des événements du processus de fragmentation des vacuoles et propose la possibilité d'un rôle régulateur de la protéine kinase cycline-dépendante Pho85.¦En outre, j'ai tenté d'éclaircir plus spécifiquement le rôle de Vps1 pendant la fusion et fission des vacuoles. J'ai trouvé que tous les deux processus sont dépendants de l'activité GTPase de cette protéine. De plus l'association avec la membrane vacuolaire paraît régulée par le cycle d'hydrolyse du GTP. Vps1 peut lier la membrane sans la présence d'un autre facteur protéinique, ce qui permet de conclure à une interaction directe avec des lipides de la membrane. Cette interaction est au moins partiellement effectuée par le domaine GTPase, ce qui est une nouveauté pour un membre de cette famille de protéines. Une deuxième partie de Vps1, nommée insert B, est impliquée dans la liaison à la vacuole, soit par interaction directe avec la membrane, soit par régulation du domaine GTPase. En assumant que Vps1 détienne deux régions capables de liaison aux membranes, je conclus qu'elle pourrait fonctionner comme facteur de « tethering » lors de la fusion des vacuoles.¦-¦La cellule contient plusieurs sous-unités, appelées organelles, possédant chacune une fonction spécifique. Dépendant des processus qui s'y déroulent à l'intérieur, un environnement chimique spécifique est requis. Pour maintenir ces différentes conditions, les organelles sont séparées par des membranes. Lors de la division cellulaire ou en adaptation à des changements de milieu, les organelles doivent être capables de modifier leur morphologie. Cette adaptation a souvent lieu par fusion ou division des organelles. Le même principe est valable pour la vacuole dans la levure. La vacuole est une organelle qui sert principalement au stockage des aliments et à la dégradation des différents composants cellulaires. Alors que la fusion des vacuoles est un processus déjà bien décrit, la fragmentation des vacuoles a jusqu'ici été peu étudiée. Elle peut être induit par un choc osmotique: à cause de la concentration de sel élevé dans le milieu, le cytosol de la levure perd de l'eau. Par un flux d'eau de la vacuole au cytosol, la cellule est capable d'équilibrer celui-ci. Quand la vacuole perd du volume, elle doit réadapter le rapport entre surface membranaire et volume, ce qui se fait efficacement par une fragmentation d'une grande vacuole en plusieurs petites vésicules. Comment ce processus se déroule d'un point de vue morphologique n'a pas été décrit jusqu'à présent. En analysant la fragmentation vacuolaire par microscopie, j'ai trouvé que celle-ci se déroule en deux phases. Pendant la première minute suivant le choc osmotique, les vacuoles rétrécissent et forment des longues invaginations tubulaires. Cette phase dépend de la protéine Vps1, un membre de la famille des protéines apparentées à la dynamine, ainsi que du gradient transmembranaire de protons. Ce gradient s'établit par une pompe membranaire, la V-ATPase, qui transporte des protons dans la vacuole en utilisant l'énergie libérée par hydrolyse d'ATP. Après cette phase initiale, la formation de nouvelles vésicules vacuolaires dépend de la synthèse du lipide PI(3,5)P2.¦Dans la deuxième partie de l'étude, j'ai tenté de décrire comment Vps1 lie la membrane pour effectuer un remodelage de la vacuole. Vps1 est nécessaire pour la fusion et la fragmentation des vacuoles. J'ai découvert que tous les deux processus dépendent de sa capacité d'hydrolyser du GTP. Ainsi l'association avec la membrane est couplée au cycle d'hydrolyse du GTP. Vps1 peut lier la membrane sans la présence d'une autre protéine, et interagit donc très probablement avec les lipides de la membrane. Deux parties différentes de la protéine sont impliquées dans la liaison, dont une, inattendue, le domaine GTPase.¦-¦Numerous organelles undergo membrane fission and fusion events during cell division, vesicular traffic, or in response to changes in environmental conditions. Examples include Golgi (Acharya et al., 1998) mitochondria (Bleazard et al., 1999) peroxisomes (Kuravi et al., 2006) and lysosomes (Ward et al., 1997). In the yeast Saccharomyces cerevisiae the vacuole is the terminal component of the endocytic pathway and corresponds to lysosomes in mammalian cells. Yeast vacuoles fragment into multiple small vesicles in response to a hypertonic shock. This rapid and homogeneous reaction can serve as a model to study the requirements of the fragmentation process. Here, I investigated osmotically induced fragmentation by time-lapse microscopy. I observe that the small fragmentation products originate directly from the large central vacuole by asymmetric scission rather than by consecutive equal divisions and that fragmentation occurs in two distinct phases. During the first minute, vacuoles shrink and generate deep invaginations, leaving behind tubular structures. This phase requires the dynamin-like GTPase Vps1 and the vacuolar proton gradient. In the subsequent 10-15 minutes, vesicles pinch off from the tubular structures in a polarized fashion, directly generating fragmentation products of the final size. This phase depends on the production of phosphatidylinositol- 3,5-bisphosphate by the Fab1 complex. I suggest a possible regulation of vacuole fragmentation by the CDK Pho85. Based on my microscopy study I established a sequential involvement of the different fission factors.¦In addition to the morphological description of vacuole fragmentation I more specifically aimed to shed some light on the role of Vps1 in vacuole fragmentation and fusion. I find that both functions are dependent on the GTPase activity of the protein and that also the membrane association of the dynamin-like protein is coupled to the GTPase cycle. I found that Vps1 has the capacity for direct lipid binding on the vacuole and that this lipid binding is at least partially mediated through residues in the GTPase domain, a complete novelty for a dynamin family member. A second stretch located in the region of insert Β has also membrane-binding activity or regulates the association with the vacuole through the GTPase domain. Under the assumption of two membrane-binding regions I speculate on Vps1 as a possible tethering factor for vacuole fusion.
Resumo:
Polytene chromosome preparations were obtained from larval, pupal and adult female Malpighian tubules of Aedes aegypti. The Malpighian tubules of the pupae (0-4 h old) from larvae reared at 20ºC provided the best cytogenetic analysis. The interaction of nucleic acids and proteins that influence the spreading of the chromosomes could be reduced with the preparation technique of the sheets submitted to a stronger treatment starting with the hypotony of tissue and successive bathings with acetic acid. A simple technique should facilitate molecular cytogenetics used in the location of resistance and vector competence genes.
Resumo:
Digital holographic microscopy (DHM) is a technique that allows obtaining, from a single recorded hologram, quantitative phase image of living cell with interferometric accuracy. Specifically the optical phase shift induced by the specimen on the transmitted wave front can be regarded as a powerful endogenous contrast agent, depending on both the thickness and the refractive index of the sample. Thanks to a decoupling procedure cell thickness and intracellular refractive index can be measured separately. Consequently, Mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC), two highly relevant clinical parameters, have been measured non-invasively at a single cell level. The DHM nanometric axial and microsecond temporal sensitivities have permitted to measure the red blood cell membrane fluctuations (CMF) on the whole cell surface. ©2009 COPYRIGHT SPIE--The International Society for Optical Engineering.
Resumo:
The effect of high antigen dose on the activation of cytochrome c peptide-primed lymph node cells was determined in several strains of mice by a limiting dilution analysis. It was found that proliferation of cytochrome c peptide-specific T cells was completely inhibited at high antigen concentration in C57BL/6 but only partially in DBA mice and had no effect in SJL mice. Clones derived from DBA mice showed a differential capacity to be inhibited by high antigen dose. On the other hand, interleukin 2 production by these clones was not impaired regardless of the antigen concentrations used.
Resumo:
Roux-en-Y gastric bypass (RYGBP) is one of the most commonly performed bariatric procedures for morbidly obese patients. It is associated with effective long-term weight loss, but can lead to significant complications, especially at the gastrojejunostomy (GJS). All the patients undergoing laparoscopic RYGBP at one of our two institutions were included in this study. The prospectively collected data were reviewed retrospectively for the purpose of this study, in which we compared two different techniques for the construction of the GJS and their effects on the incidence of complications. In group A, anastomosis was performed on the posterior aspect of the gastric pouch. In group B, it was performed across the staple line used to form the gastric pouch. A 21-mm circular stapler was used in all patients. A total of 1,128 patients were included between June 1999 and September 2009-639 in group A and 488 in group B. Sixty patients developed a total of 65 complications at the GJS, with 14 (1.2%) leaks, 42 (3.7%) strictures, and 9 (0.8%) marginal ulcers. Leaks (0.2% versus 2%, p = 0.005) and strictures (0.8% versus 5.9%, p < 0.0001) were significantly fewer in group B than in group A. Improved surgical technique, as we propose, with the GJS across the staple line used to form the gastric pouch, significantly reduces the rate of anastomotic complications at the GJS. A circular 21-mm stapler can be used with a low complication rate, and especially a low stricture rate. Additional methods to limit complications at the GJS are probably not routinely warranted.
Resumo:
Ultrathin sections of tissue cysts isolated from the brain of Toxoplasma gondii infected mice were submitted to two different methodologies derived from the periodic acid - Schiff's reagent (PAS) technique. The use of osmium tetroxide vapor as a developing agent of the aldehyde oxidation to reveal polysaccharides with periodic acid resulted in positive reaction in amylopectin granules in bradyzoites, as well as in the wall and matrix of the cysts, with excellent increment of the ultrastructural morphology. This technique can be used for study of T. gondii-host cell intracellular cycle, the differentiation tachyzoite-bradyzoite, and also for the formation of cysts into the host cells.
Resumo:
This reversible poster is part of an extension of the cleanyourhands campaign, aimed at preventing the spread of healthcare associated infections (HCAIs) in community healthcare settings including primary care and dental services, residential and nursing homes (including independent sector homes), hospices and independent clinics/hospitals. It is designed for pump dispenser or handwashing areas to heighten awareness of protecting patients from avoidable infections by cleaning of hands using proper techniques.
Resumo:
The specific identification of Lymnaeid snails is based on a comparison of morphological characters of the shell, radula, renal and reproductive organs. However, the identification is complicated by dissection process, intra and interspecific similarity and variability of morphological characters. In the present study, polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) techniques targeted to the first and second internal transcribed spacers (ITS1 and ITS2) rDNA and to the mitochondrial 16S ribosomal gene (16S rDNAmt) were used to differentiate the species Lymnaea columella, L. viatrix, and L. diaphana from some localities of Brazil, Argentina, and Uruguay as well as to verify whether the molecular results corroborates the classical morphological method.PCR-RFLP analysis of the ITS1, ITS2, and 16S using 12 restriction enzymes revealed characteristic patterns for L. columella and L. diaphana which were concordant with the classical morphology. On the other hand, for L. viatrix populations a number of 1 to 6 profiles were generated while morphology provided the species pattern results.