846 resultados para Computer-based simulation
Resumo:
Peer-reviewed
Resumo:
This thesis introduces a real-time simulation environment based on the multibody simulation approach. The environment consists of components that are used in conventional product development, including computer aided drawing, visualization, dynamic simulation and finite element software architecture, data transfer and haptics. These components are combined to perform as a coupled system on one platform. The environment is used to simulate mobile and industrial machines at different stages of a product life time. Consequently, the demands of the simulated scenarios vary. In this thesis, a real-time simulation environment based on the multibody approach is used to study a reel mechanism of a paper machine and a gantry crane. These case systems are used to demonstrate the usability of the real-time simulation environment for fault detection purposes and in the context of a training simulator. In order to describe the dynamical performance of a mobile or industrial machine, the nonlinear equations of motion must be defined. In this thesis, the dynamical behaviour of machines is modelled using the multibody simulation approach. A multibody system may consist of rigid and flexible bodies which are joined using kinematic joint constraints while force components are used to describe the actuators. The strength of multibody dynamics relies upon its ability to describe nonlinearities arising from wearing of the components, friction, large rotations or contact forces in a systematic manner. For this reason, the interfaces between subsystems such as mechanics, hydraulics and control systems of the mechatronic machine can be defined and analyzed in a straightforward manner.
Resumo:
Virtual screening is a central technique in drug discovery today. Millions of molecules can be tested in silico with the aim to only select the most promising and test them experimentally. The topic of this thesis is ligand-based virtual screening tools which take existing active molecules as starting point for finding new drug candidates. One goal of this thesis was to build a model that gives the probability that two molecules are biologically similar as function of one or more chemical similarity scores. Another important goal was to evaluate how well different ligand-based virtual screening tools are able to distinguish active molecules from inactives. One more criterion set for the virtual screening tools was their applicability in scaffold-hopping, i.e. finding new active chemotypes. In the first part of the work, a link was defined between the abstract chemical similarity score given by a screening tool and the probability that the two molecules are biologically similar. These results help to decide objectively which virtual screening hits to test experimentally. The work also resulted in a new type of data fusion method when using two or more tools. In the second part, five ligand-based virtual screening tools were evaluated and their performance was found to be generally poor. Three reasons for this were proposed: false negatives in the benchmark sets, active molecules that do not share the binding mode, and activity cliffs. In the third part of the study, a novel visualization and quantification method is presented for evaluation of the scaffold-hopping ability of virtual screening tools.
Resumo:
BACKGROUND: Simulation techniques are spreading rapidly in medicine. Suc h resources are increasingly concentrated in Simulation Laboratories. The MSRP-USP is structuring such a laboratory and is interested in the prevalence of individual initiatives that could be centralized there. The MSRP-USP currently has five full-curriculum courses in the health sciences: Medicine, Speech Therapy, Physical Therapy, Nutrition, and Occupational Therapy, all consisting of core disciplines. GOAL: To determine the prevalence of simulation techniques in the regular courses at MSRP-USP. METHODS: Coordinators of disciplines in the various courses were interviewed using a specifically designed semi-structured questionnaire, and all the collected data were stored in a dedicated database. The disciplines were grouped according to whether they used (GI) or did not use (GII) simulation resources. RESULTS AND DISCUSSION: 256 disciplines were analyzed, of which only 18.3% used simulation techniques, varying according to course: Medicine (24.7.3%), Occupational Therapy (23.0%), Nutrition (15.9%), Physical Therapy (9.8%), and Speech Therapy (9.1%). Computer simulation programs predominated (42.5%) in all five courses. The resources were provided mainly by MSRP-USP (56.3%), with additional funding coming from other sources based on individual initiatives. The same pattern was observed for maintenance. There was great interest in centralizing the resources in the new Simulation Laboratory in order to facilitate maintenance, but there was concern about training and access to the material. CONCLUSIONS: 1) The MSRP-USP simulation resources show low complexity and are mainly limited to computer programs; 2) Use of simulation varies according to course, and is most prevalent in Medicine; 3) Resources are scattered across several locations, and their acquisition and maintenance depend on individual initiatives rather than central coordination or curricular guidelines
Resumo:
The aim of this dissertation is to investigate if participation in business simulation gaming sessions can make different leadership styles visible and provide students with experiences beneficial for the development of leadership skills. Particularly, the focus is to describe the development of leadership styles when leading virtual teams in computer-supported collaborative game settings and to identify the outcomes of using computer simulation games as leadership training tools. To answer to the objectives of the study, three empirical experiments were conducted to explore if participation in business simulation gaming sessions (Study I and II), which integrate face-to-face and virtual communication (Study III and IV), can make different leadership styles visible and provide students with experiences beneficial for the development of leadership skills. In the first experiment, a group of multicultural graduate business students (N=41) participated in gaming sessions with a computerized business simulation game (Study III). In the second experiment, a group of graduate students (N=9) participated in the training with a ‘real estate’ computer game (Study I and II). In the third experiment, a business simulation gaming session was organized for graduate students group (N=26) and the participants played the simulation game in virtual teams, which were organizationally and geographically dispersed but connected via technology (Study IV). Each team in all experiments had three to four students and students were between 22 and 25 years old. The business computer games used for the empirical experiments presented an enormous number of complex operations in which a team leader needed to make the final decisions involved in leading the team to win the game. These gaming environments were interactive;; participants interacted by solving the given tasks in the game. Thus, strategy and appropriate leadership were needed to be successful. The training was competition-based and required implementation of leadership skills. The data of these studies consist of observations, participants’ reflective essays written after the gaming sessions, pre- and post-tests questionnaires and participants’ answers to open- ended questions. Participants’ interactions and collaboration were observed when they played the computer games. The transcripts of notes from observations and students dialogs were coded in terms of transactional, transformational, heroic and post-heroic leadership styles. For the data analysis of the transcribed notes from observations, content analysis and discourse analysis was implemented. The Multifactor Leadership Questionnaire (MLQ) was also utilized in the study to measure transformational and transactional leadership styles;; in addition, quantitative (one-way repeated measures ANOVA) and qualitative data analyses have been performed. The results of this study indicate that in the business simulation gaming environment, certain leadership characteristics emerged spontaneously. Experiences about leadership varied between the teams and were dependent on the role individual students had in their team. These four studies showed that simulation gaming environment has the potential to be used in higher education to exercise the leadership styles relevant in real-world work contexts. Further, the study indicated that given debriefing sessions, the simulation game context has much potential to benefit learning. The participants who showed interest in leadership roles were given the opportunity of developing leadership skills in practice. The study also provides evidence of unpredictable situations that participants can experience and learn from during the gaming sessions. The study illustrates the complex nature of experiences from the gaming environments and the need for the team leader and role divisions during the gaming sessions. It could be concluded that the experience of simulation game training illustrated the complexity of real life situations and provided participants with the challenges of virtual leadership experiences and the difficulties of using leadership styles in practice. As a result, the study offers playing computer simulation games in small teams as one way to exercise leadership styles in practice.
Resumo:
The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.
Resumo:
Transportation and warehousing are large and growing sectors in the society, and their efficiency is of high importance. Transportation also has a large share of global carbondioxide emissions, which are one the leading causes of anthropogenic climate warming. Various countries have agreed to decrease their carbon emissions according to the Kyoto protocol. Transportation is the only sector where emissions have steadily increased since the 1990s, which highlights the importance of transportation efficiency. The efficiency of transportation and warehousing can be improved with the help of simulations, but models alone are not sufficient. This research concentrates on the use of simulations in decision support systems. Three main simulation approaches are used in logistics: discrete-event simulation, systems dynamics, and agent-based modeling. However, individual simulation approaches have weaknesses of their own. Hybridization (combining two or more approaches) can improve the quality of the models, as it allows using a different method to overcome the weakness of one method. It is important to choose the correct approach (or a combination of approaches) when modeling transportation and warehousing issues. If an inappropriate method is chosen (this can occur if the modeler is proficient in only one approach or the model specification is not conducted thoroughly), the simulation model will have an inaccurate structure, which in turn will lead to misleading results. This issue can further escalate, as the decision-maker may assume that the presented simulation model gives the most useful results available, even though the whole model can be based on a poorly chosen structure. In this research it is argued that simulation- based decision support systems need to take various issues into account to make a functioning decision support system. The actual simulation model can be constructed using any (or multiple) approach, it can be combined with different optimization modules, and there needs to be a proper interface between the model and the user. These issues are presented in a framework, which simulation modelers can use when creating decision support systems. In order for decision-makers to fully benefit from the simulations, the user interface needs to clearly separate the model and the user, but at the same time, the user needs to be able to run the appropriate runs in order to analyze the problems correctly. This study recommends that simulation modelers should start to transfer their tacit knowledge to explicit knowledge. This would greatly benefit the whole simulation community and improve the quality of simulation-based decision support systems as well. More studies should also be conducted by using hybrid models and integrating simulations with Graphical Information Systems.
Resumo:
Combating climate change is one of the key tasks of humanity in the 21st century. One of the leading causes is carbon dioxide emissions due to usage of fossil fuels. Renewable energy sources should be used instead of relying on oil, gas, and coal. In Finland a significant amount of energy is produced using wood. The usage of wood chips is expected to increase in the future significantly, over 60 %. The aim of this research is to improve understanding over the costs of wood chip supply chains. This is conducted by utilizing simulation as the main research method. The simulation model utilizes both agent-based modelling and discrete event simulation to imitate the wood chip supply chain. This thesis concentrates on the usage of simulation based decision support systems in strategic decision-making. The simulation model is part of a decision support system, which connects the simulation model to databases but also provides a graphical user interface for the decisionmaker. The main analysis conducted with the decision support system concentrates on comparing a traditional supply chain to a supply chain utilizing specialized containers. According to the analysis, the container supply chain is able to have smaller costs than the traditional supply chain. Also, a container supply chain can be more easily scaled up due to faster emptying operations. Initially the container operations would only supply part of the fuel needs of a power plant and it would complement the current supply chain. The model can be expanded to include intermodal supply chains as due to increased demand in the future there is not enough wood chips located close to current and future power plants.
Resumo:
Communication, the flow of ideas and information between individuals in a social context, is the heart of educational experience. Constructivism and constructivist theories form the foundation for the collaborative learning processes of creating and sharing meaning in online educational contexts. The Learning and Collaboration in Technology-enhanced Contexts (LeCoTec) course comprised of 66 participants drawn from four European universities (Oulu, Turku, Ghent and Ramon Llull). These participants were split into 15 groups with the express aim of learning about computer-supported collaborative learning (CSCL). The Community of Inquiry model (social, cognitive and teaching presences) provided the content and tools for learning and researching the collaborative interactions in this environment. The sampled comments from the collaborative phase were collected and analyzed at chain-level and group-level, with the aim of identifying the various message types that sustained high learning outcomes. Furthermore, the Social Network Analysis helped to view the density of whole group interactions, as well as the popular and active members within the highly collaborating groups. It was observed that long chains occur in groups having high quality outcomes. These chains were also characterized by Social, Interactivity, Administrative and Content comment-types. In addition, high outcomes were realized from the high interactive cases and high-density groups. In low interactive groups, commenting patterned around the one or two central group members. In conclusion, future online environments should support high-order learning and develop greater metacognition and self-regulation. Moreover, such an environment, with a wide variety of problem solving tools, would enhance interactivity.
Resumo:
In this Master’s thesis agent-based modeling has been used to analyze maintenance strategy related phenomena. The main research question that has been answered was: what does the agent-based model made for this study tell us about how different maintenance strategy decisions affect profitability of equipment owners and maintenance service providers? Thus, the main outcome of this study is an analysis of how profitability can be increased in industrial maintenance context. To answer that question, first, a literature review of maintenance strategy, agent-based modeling and maintenance modeling and optimization was conducted. This review provided the basis for making the agent-based model. Making the model followed a standard simulation modeling procedure. With the simulation results from the agent-based model the research question was answered. Specifically, the results of the modeling and this study are: (1) optimizing the point in which a machine is maintained increases profitability for the owner of the machine and also the maintainer with certain conditions; (2) time-based pricing of maintenance services leads to a zero-sum game between the parties; (3) value-based pricing of maintenance services leads to a win-win game between the parties, if the owners of the machines share a substantial amount of their value to the maintainers; and (4) error in machine condition measurement is a critical parameter to optimizing maintenance strategy, and there is real systemic value in having more accurate machine condition measurement systems.
Resumo:
The main objective of this work is to analyze the importance of the gas-solid interface transfer of the kinetic energy of the turbulent motion on the accuracy of prediction of the fluid dynamic of Circulating Fluidized Bed (CFB) reactors. CFB reactors are used in a variety of industrial applications related to combustion, incineration and catalytic cracking. In this work a two-dimensional fluid dynamic model for gas-particle flow has been used to compute the porosity, the pressure, and the velocity fields of both phases in 2-D axisymmetrical cylindrical co-ordinates. The fluid dynamic model is based on the two fluid model approach in which both phases are considered to be continuous and fully interpenetrating. CFB processes are essentially turbulent. The model of effective stress on each phase is that of a Newtonian fluid, where the effective gas viscosity was calculated from the standard k-epsilon turbulence model and the transport coefficients of the particulate phase were calculated from the kinetic theory of granular flow (KTGF). This work shows that the turbulence transfer between the phases is very important for a better representation of the fluid dynamics of CFB reactors, especially for systems with internal recirculation and high gradients of particle concentration. Two systems with different characteristics were analyzed. The results were compared with experimental data available in the literature. The results were obtained by using a computer code developed by the authors. The finite volume method with collocated grid, the hybrid interpolation scheme, the false time step strategy and SIMPLEC (Semi-Implicit Method for Pressure Linked Equations - Consistent) algorithm were used to obtain the numerical solution.
Resumo:
In this paper we present a study of feasibility by using Cassino Parallel Manipulator (CaPaMan) as an earthquake simulator. We propose a suitable formulation to simulate the frequency, amplitude and acceleration magnitude of seismic motion by means of the movable platform motion by giving a suitable input motion. In this paper we have reported numerical simulations that simulate the three principal earthquake types for a seismic motion: one at the epicenter (having a vertical motion), another far from the epicenter (with the motion on a horizontal plane), and a combined general motion (with a vertical and horizontal motion).
Resumo:
This work present the application of a computer package for generating of projection data for neutron computerized tomography, and in second part, discusses an application of neutron tomography, using the projection data obtained by Monte Carlo technique, for the detection and localization of light materials such as those containing hydrogen, concealed by heavy materials such as iron and lead. For tomographic reconstructions of the samples simulated use was made of only six equal projection angles distributed between 0º and 180º, with reconstruction making use of an algorithm (ARIEM), based on the principle of maximum entropy. With the neutron tomography it was possible to detect and locate polyethylene and water hidden by lead and iron (with 1cm-thick). Thus, it is demonstrated that thermal neutrons tomography is a viable test method which can provide important interior information about test components, so, extremely useful in routine industrial applications.
Resumo:
Virtual environments and real-time simulators (VERS) are becoming more and more important tools in research and development (R&D) process of non-road mobile machinery (NRMM). The virtual prototyping techniques enable faster and more cost-efficient development of machines compared to use of real life prototypes. High energy efficiency has become an important topic in the world of NRMM because of environmental and economic demands. The objective of this thesis is to develop VERS based methods for research and development of NRMM. A process using VERS for assessing effects of human operators on the life-cycle efficiency of NRMM was developed. Human in the loop simulations are ran using an underground mining loader to study the developed process. The simulations were ran in the virtual environment of the Laboratory of Intelligent Machines of Lappeenranta University of Technology. A physically adequate real-time simulation model of NRMM was shown to be reliable and cost effective in testing of hardware components by the means of hardware-in-the-loop (HIL) simulations. A control interface connecting integrated electro-hydraulic energy converter (IEHEC) with virtual simulation model of log crane was developed. IEHEC consists of a hydraulic pump-motor and an integrated electrical permanent magnet synchronous motorgenerator. The results show that state of the art real-time NRMM simulators are capable to solve factors related to energy consumption and productivity of the NRMM. A significant variation between the test drivers is found. The results show that VERS can be used for assessing human effects on the life-cycle efficiency of NRMM. HIL simulation responses compared to that achieved with conventional simulation method demonstrate the advances and drawbacks of various possible interfaces between the simulator and hardware part of the system under study. Novel ideas for arranging the interface are successfully tested and compared with the more traditional one. The proposed process for assessing the effects of operators on the life-cycle efficiency will be applied for wider group of operators in the future. Driving styles of the operators can be analysed statistically from sufficient large result data. The statistical analysis can find the most life-cycle efficient driving style for the specific environment and machinery. The proposed control interface for HIL simulation need to be further studied. The robustness and the adaptation of the interface in different situations must be verified. The future work will also include studying the suitability of the IEHEC for different working machines using the proposed HIL simulation method.
Resumo:
In the field of molecular biology, scientists adopted for decades a reductionist perspective in their inquiries, being predominantly concerned with the intricate mechanistic details of subcellular regulatory systems. However, integrative thinking was still applied at a smaller scale in molecular biology to understand the underlying processes of cellular behaviour for at least half a century. It was not until the genomic revolution at the end of the previous century that we required model building to account for systemic properties of cellular activity. Our system-level understanding of cellular function is to this day hindered by drastic limitations in our capability of predicting cellular behaviour to reflect system dynamics and system structures. To this end, systems biology aims for a system-level understanding of functional intraand inter-cellular activity. Modern biology brings about a high volume of data, whose comprehension we cannot even aim for in the absence of computational support. Computational modelling, hence, bridges modern biology to computer science, enabling a number of assets, which prove to be invaluable in the analysis of complex biological systems, such as: a rigorous characterization of the system structure, simulation techniques, perturbations analysis, etc. Computational biomodels augmented in size considerably in the past years, major contributions being made towards the simulation and analysis of large-scale models, starting with signalling pathways and culminating with whole-cell models, tissue-level models, organ models and full-scale patient models. The simulation and analysis of models of such complexity very often requires, in fact, the integration of various sub-models, entwined at different levels of resolution and whose organization spans over several levels of hierarchy. This thesis revolves around the concept of quantitative model refinement in relation to the process of model building in computational systems biology. The thesis proposes a sound computational framework for the stepwise augmentation of a biomodel. One starts with an abstract, high-level representation of a biological phenomenon, which is materialised into an initial model that is validated against a set of existing data. Consequently, the model is refined to include more details regarding its species and/or reactions. The framework is employed in the development of two models, one for the heat shock response in eukaryotes and the second for the ErbB signalling pathway. The thesis spans over several formalisms used in computational systems biology, inherently quantitative: reaction-network models, rule-based models and Petri net models, as well as a recent formalism intrinsically qualitative: reaction systems. The choice of modelling formalism is, however, determined by the nature of the question the modeler aims to answer. Quantitative model refinement turns out to be not only essential in the model development cycle, but also beneficial for the compilation of large-scale models, whose development requires the integration of several sub-models across various levels of resolution and underlying formal representations.