964 resultados para Computational modelling by homology
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
PhD thesis in Biomedical Engineering
Resumo:
Architectural (bad) smells are design decisions found in software architectures that degrade the ability of systems to evolve. This paper presents an approach to verify that a software architecture is smellfree using the Archery architectural description language. The language provides a core for modelling software architectures and an extension for specifying constraints. The approach consists in precisely specifying architectural smells as constraints, and then verifying that software architectures do not satisfy any of them. The constraint language is based on a propositional modal logic with recursion that includes: a converse operator for relations among architectural concepts, graded modalities for describing the cardinality in such relations, and nominals referencing architectural elements. Four architectural smells illustrate the approach.
Resumo:
Software product lines (SPL) are diverse systems that are developed using a dual engineering process: (a)family engineering defines the commonality and variability among all members of the SPL, and (b) application engineering derives specific products based on the common foundation combined with a variable selection of features. The number of derivable products in an SPL can thus be exponential in the number of features. This inherent complexity poses two main challenges when it comes to modelling: Firstly, the formalism used for modelling SPLs needs to be modular and scalable. Secondly, it should ensure that all products behave correctly by providing the ability to analyse and verify complex models efficiently. In this paper we propose to integrate an established modelling formalism (Petri nets) with the domain of software product line engineering. To this end we extend Petri nets to Feature Nets. While Petri nets provide a framework for formally modelling and verifying single software systems, Feature Nets offer the same sort of benefits for software product lines. We show how SPLs can be modelled in an incremental, modular fashion using Feature Nets, provide a Feature Nets variant that supports modelling dynamic SPLs, and propose an analysis method for SPL modelled as Feature Nets. By facilitating the construction of a single model that includes the various behaviours exhibited by the products in an SPL, we make a significant step towards efficient and practical quality assurance methods for software product lines.
Resumo:
Dissertação de mestrado integrado em Civil Engineering
Resumo:
The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.
Resumo:
This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational intelligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two illustrative Traffic Engineering methods are described, allowing to attain routing configurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.
Resumo:
During must fermentation by Saccharomyces cerevisiae strains thousands of volatile aroma compounds are formed. The objective of the present work was to adapt computational approaches to analyze pheno-metabolomic diversity of a S. cerevisiae strain collection with different origins. Phenotypic and genetic characterization together with individual must fermentations were performed, and metabolites relevant to aromatic profiles were determined. Experimental results were projected onto a common coordinates system, revealing 17 statistical-relevant multi-dimensional modules, combining sets of most-correlated features of noteworthy biological importance. The present method allowed, as a breakthrough, to combine genetic, phenotypic and metabolomic data, which has not been possible so far due to difficulties in comparing different types of data. Therefore, the proposed computational approach revealed as successful to shed light into the holistic characterization of S. cerevisiae pheno-metabolome in must fermentative conditions. This will allow the identification of combined relevant features with application in selection of good winemaking strains.
Resumo:
Mo-Si-B alloys, Real microstructures, Voronoi structures, Microstructural characterization, Modelling and finite element simulations, Effective material properties, Damage and Crack growth, tensile strength, fracture toughness
Resumo:
At the moment there is a lack of methodological approaches to formalization of management of innovative projects relating to production systems, as well as to adaptation and practical use of the existing approaches. This article is about one potential approach to the management of innovative projects, which makes the building of innovative process models possible based on objective approach. It outlines the frameworks for the building of innovative project models, and describes the method of transition from conceptual modelling to innovative project management. In this case, the model alone and together with parameters used for evaluation of the project may be unique and depends on the special features of the project, preferences of decision-making person, and production and economic system in which it is to be implemented. Unlike existing approaches, this concept does not place any restrictions on types of models and makes it possible to take into account the specificities of economic and production systems. Principles embodied in the model allow its usage as a basis for simulation model to be used in one of specialized simulation systems, as well as for information system providing information support of decision-making process in production and economic systems both newly developed by the company (enterprise) and designed on the basis of available information systems that interact through the exchange of data. In addition, this article shows that the development of conceptual foundations of innovative project management in the economic and production systems is inseparable from the development of the theory of industrial control systems, and their comprehensive study may be reduced to a set of elements represented as certain algorithms, models and evaluations. Thus, the study of innovative process may be conducted in both directions: from general to particular, and vice versa.
Resumo:
Despite the huge increase in processor and interprocessor network performace, many computational problems remain unsolved due to lack of some critical resources such as floating point sustained performance, memory bandwidth, etc... Examples of these problems are found in areas of climate research, biology, astrophysics, high energy physics (montecarlo simulations) and artificial intelligence, among others. For some of these problems, computing resources of a single supercomputing facility can be 1 or 2 orders of magnitude apart from the resources needed to solve some them. Supercomputer centers have to face an increasing demand on processing performance, with the direct consequence of an increasing number of processors and systems, resulting in a more difficult administration of HPC resources and the need for more physical space, higher electrical power consumption and improved air conditioning, among other problems. Some of the previous problems can´t be easily solved, so grid computing, intended as a technology enabling the addition and consolidation of computing power, can help in solving large scale supercomputing problems. In this document, we describe how 2 supercomputing facilities in Spain joined their resources to solve a problem of this kind. The objectives of this experience were, among others, to demonstrate that such a cooperation can enable the solution of bigger dimension problems and to measure the efficiency that could be achieved. In this document we show some preliminary results of this experience and to what extend these objectives were achieved.
Resumo:
Here we describe the results of some computational explorations in Thompson's group F. We describe experiments to estimate the cogrowth of F with respect to its standard finite generating set, designed to address the subtle and difficult question whether or not Thompson's group is amenable. We also describe experiments to estimate the exponential growth rate of F and the rate of escape of symmetric random walks with respect to the standard generating set.
Resumo:
We construct the Chow motive modelling intersection co-homology of a proper surface. We then study its functoriality properties. Using Murre's decompositions of the motive of a desingularization into KÄunneth components [Mr1], we show that such decompositions exist also for the intersection motive.
Resumo:
Empirical studies on industrial location do not typically distinguish between new and relocated establishments. This paper addresses this shortcoming using data on the frequency of these events in municipalities of the same economic-administrative region. This enables us to test not only for differences in their determinants but also for interrelations between start-ups and relocations. Estimates from count regression models for cross-section and panel data show that, although partial effects differ, common patterns arise in “institutional” and “neoclassical” explanatory factors. Also, start-ups and relocations are positive but asymmetrically related. JEL classification: C25, R30, R10. Keywords: cities, count data models, industrial location
Resumo:
The purpose of this paper is to review the scientific literature from August 2007 to July 2010. The review is focused on more than 420 published papers. The review will not cover information coming from international meetings available only in abstract form. Fingermarks constitute an important chapter with coverage of the identification process as well as detection techniques on various surfaces. We note that the research has been very dense both at exploring and understanding current detection methods as well as bringing groundbreaking techniques to increase the number of marks detected from various objects. The recent report from the US National Research Council (NRC) is a milestone that has promoted a critical discussion on the state of forensic science and its associated research. We can expect a surge of interest in research in relation to cognitive aspect of mark and print comparison, establishment of relevant forensic error rates and statistical modelling of the selectivity of marks' attributes. Other biometric means of forensic identification such as footmarks or earmarks are also covered in the report. Compared to previous years, we noted a decrease in the number of submission in these areas. No doubt that the NRC report has set the seed for further investigation of these fields as well.