848 resultados para Climate impacts


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global change drivers are known to interact in their effects on biodiversity, but much research to date ignores this complexity. As a consequence, there are problems in the attribution of biodiversity change to different drivers and, therefore, our ability to manage habitats and landscapes appropriately. Few studies explicitly acknowledge and account for interactive (i.e., nonadditive) effects of land use and climate change on biodiversity. One reason is that the mechanisms by which drivers interact are poorly understood. We evaluate such mechanisms, including interactions between demographic parameters, evolutionary trade-offs and synergies and threshold effects of population size and patch occupancy on population persistence. Other reasons for the lack of appropriate research are limited data availability and analytical issues in addressing interaction effects. We highlight the influence that attribution errors can have on biodiversity projections and discuss experimental designs and analytical tools suited to this challenge. Finally, we summarize the risks and opportunities provided by the existence of interaction effects. Risks include ineffective conservation management; but opportunities also arise, whereby the negative impacts of climate change on biodiversity can be reduced through appropriate land management as an adaptation measure. We hope that increasing the understanding of key mechanisms underlying interaction effects and discussing appropriate experimental and analytical designs for attribution will help researchers, policy makers, and conservation practitioners to better minimize risks and exploit opportunities provided by land use-climate change interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter(PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000–116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US$232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr−1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as having an unintended impact on the regional radiative balance and climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human population growth and resource use, mediated by changes in climate, land use, and water use, increasingly impact biodiversity and ecosystem services provision. However, impacts of these drivers on biodiversity and ecosystem services are rarely analyzed simultaneously and remain largely unknown. An emerging question is how science can improve the understanding of change in biodiversity and ecosystem service delivery and of potential feedback mechanisms of adaptive governance. We analyzed past and future change in drivers in south-central Sweden. We used the analysis to identify main research challenges and outline important research tasks. Since the 19th century, our study area has experienced substantial and interlinked changes; a 1.6°C temperature increase, rapid population growth, urbanization, and massive changes in land use and water use. Considerable future changes are also projected until the mid-21st century. However, little is known about the impacts on biodiversity and ecosystem services so far, and this in turn hampers future projections of such effects. Therefore, we urge scientists to explore interdisciplinary approaches designed to investigate change in multiple drivers, underlying mechanisms, and interactions over time, including assessment and analysis of matching-scale data from several disciplines. Such a perspective is needed for science to contribute to adaptive governance by constantly improving the understanding of linked change complexities and their impacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a rights-based approach for participatory urban planning for climate change adaptation in urban areas. Participatory urban planning ties climate change adaptation to local development opportunities. Previous discussions suggest that participatory urban planning may help to understand structural inequalities, to gain, even if temporally, institutional support and to deliver a planning process in constant negotiation with local actors. Building upon an action research project which implemented a process of participatory urban planning for climate change in Maputo, Mozambique, this paper reflects upon the practical lessons that emerged from these experiences, in relation to the incorporation of climate change information, the difficulties to secure continued support from local governments and the opportunities for local impacts through the implementation of the proposals emerging from this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5°C to 4°C above pre-industrial values in the 21st century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013). Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2°C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first agricultural societies were established around 10 ka BP and had spread across much of Europe and southern Asia by 5.5 ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies (e.g. Joos et al., 2004; Kaplan et al., 2011; Mitchell et al., 2013) have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with Hadley Centre Coupled Model version 3 (HadCM3) were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) one in which potential natural vegetation was simulated by Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) but without land use changes and (ii) one where the anthropogenic land use model Kaplan and Krumhardt 2010 (KK10; Kaplan et al., 2009, 2011) was used to set the HadCM3 crop regions. Snapshot simulations were run at 1000-year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results from our model simulations indicate that in regions of early land disturbance such as Europe and south-east Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7 ka BP in the June–July–August (JJA) season and throughout the entire annual cycle by 2–3 ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. The global annual mean temperature anomalies found in our single model simulations were −0.22 at 1850 CE, −0.11 at 2 ka BP, and −0.03 °C at 7 ka BP. Regionally, the largest temperature changes were in Europe with anomalies of −0.83 at 1850 CE, −0.58 at 2 ka BP, and −0.24 °C at 7 ka BP. Large-scale precipitation features such as the Indian monsoon, the Intertropical Convergence Zone (ITCZ), and the North Atlantic storm track are also impacted by local land use and remote teleconnections. We investigated how advection by surface winds, mean sea level pressure (MSLP) anomalies, and tropospheric stationary wave train disturbances in the mid- to high latitudes led to remote teleconnections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change as a phenomenon will imply new risks for the ski industry. Intergovernmental Panal on Climate Change presents three future scenarios, during the periods between 1990-2100, in forms of increased temperatures, a rise in the sea level and seasonal variations, variables out of which two have direct impacts on the ski industry. The aim for this study was to explore and compare attitudes towards climate change between five ski resorts located in mid-south of Sweden. This was done through in depth interviews in both face to face and by telephone. The result of the study was that all the chosen ski resorts were aware of climate change as a phenomenon but have not yet recognized its consequences. All ski resorts use methods to maintain skiing i.e. artificial snow production though not because of climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential impact of global climate change on the spatial-temporal distribution of phoma leaf spot of coffee in Brazil was evaluated. Maps were prepared with the favorability of the climate to the occurrence of the disease in the current period and future. The future scenarios used were centered for the decades of 2010-2030, 2040-2060, and 2070-2090 (scenarios A2 and B2). These scenarios were obtained from six global climate models (GCM's) provided by the Intergovernmental Panel on Climate Change (IPCC). Assuming the future scenarios outlined by the IPCC, a reduction will occur in the occurrence of climatic favorability of phoma leaf spot in Brazil in both future scenarios (A2 and B2). As with the temporal distribution, the period of greatest risk of phoma leaf spot will tend to diminish in future decades. These planned changes will be larger in the A2 scenario compared to the predicted scenario B2. Despite the decrease in the favorability of phoma leaf spot in the country, some regions still present a potential risk of this disease. Furthermore, the increased frequency of extreme weather was not taken in to account. These will certainly influence the magnitude of potential impacts of climate change on the phoma leaf spot in Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes Bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this publication is to document the current state of urban climate change adaptation practice in Latin America. It is a summary of the three workshops of the Regional Learning Network that was set up under the ClimateAdaptationSantiago project (CAS), encompassing six large Latin American cities (Bogotá, Buenos Aires, Lima, Mexico City, São Paulo and Santiago). It aims to synthesize information on the manifestations and impacts of climate change in those Latin American cities that participated in the network, and above all, governance in the form of concrete actions. The publication is based on information obtained from the participants in the three workshops, but also includes additional scientific input and reflections by the editors. All of this information makes a major contribution to highlighting the different paths these six cities are pursuing in response to climate change. To that end, the publication discusses the various courses of action on climate change adaptation, with the aim of learning from these cases and highlighting practical examples.