653 resultados para Churchite-(REE)
Resumo:
Resting energy expenditure (REE) is lower than predicted in persons taking atypical antipsychotic medication, and weight management is a significant clinical challenge for some of them. However, to date there have been no published guidelines to assist clinicians in choosing appropriate prediction equations to estimate energy expenditure in persons taking atypical antipsychotic medications. The objectives of this study were to measure REE in a group of men taking the atypical antipsychotic clozapine and to determine whether REE can be accurately predicted for this population using previously published regression equations. REE was measured using indirect calorimetry via a ventilated hood on eight men who had completed at least 6 months of treatment with clozapine. Comparisons between measured REE and predicted REE using five different equations were undertaken. The commonly-used Harris-Benedict and Schofield equations systematically overestimated REE. Predictions of REE from other equations were too variable for clinical use. When estimating energy requirements as part of a weight-management program in men who have been taking clozapine for 6 months, predictions of REE from the equations of Harris-Benedict and Schofield should be reduced by 280 kcal/day.
Resumo:
Complete rare earth element (except Eu) and Y concentrations from the estuarine mixing zone (salinity =0.2 to 33) of Elimbah Creek, Queensland, Australia, were measured by quadrupole ICP-MS without preconcentration. High sampling density in the low salinity regime along with high quality data allow accurate tracing of the development of the typical marine rare earth element anomalies as well as Y/Ho fractionation. Over the entire estuary, the rare earth elements are strongly removed relative to a freshwater endmember (60-80% removal). This large overall removal occurs despite a strong remineralisation peak (190% for La, 130% for Y relative to the freshwater endmember) in the mid-salinity zone. Removal and remineralisation are accompanied by fractionation of the original (freshwater) rare earth element pattern, resulting in light rare earth element depletion. Estuarine fractionation generates a large positive La anomaly and a superchondritic Y/Ho ratio. Conversely, we observe no evidence to support the generation of the negative Ce anomaly in the estuary. With the exception of Ce, the typical marine rare earth element features can thus be attributed to estuarine mixing processes. The persistence of these features in hydrogenous sediments for at least 3.71 Ga highlights the importance of estuarine processes for marine chemistry on geological timescales. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The New Caledonia ophiolite hosts one of the largest obducted mantle section in the world, hence providing a unique insight for the study of upper mantle processes. These mantle rocks belong to an “atypical” ophiolitic sequence, which is dominated by refractory harzburgites but it also includes minor spinel and plagioclase lherzolites. Upper crust is notably absent in the ophiolite, with the exception of some mafic-ultramafic cumulates cropping out in the southern part of the island. Although the New Caledonia ophiolite has been under investigation for decades, its ultra-depleted nature has made its characterization an analytical challenge, so that few trace element data are available, while isotopic data are completely missing. In this thesis a comprehensive geochemical study (major, trace element and Sr-Nd-Pb isotopes) of the peridotites and the associated intrusive mafic rocks from the New Caledonia ophiolite has been carried out. The peridotites are low-strain tectonites showing porphyroclastic textures. Spinel lherzolites are undepleted lithotypes, as attested by the presence of 7-8 vol% of Na2O and Al2O3-rich clinopyroxene (up to 0.5 wt% Na2O; 6.5 wt% Al2O3), Fo content of olivine (88.5-90.0 mol%) and low Cr# of spinel (13-17). Conversely, harzburgites display a refractory nature, proven by the remarkable absence of primary clinopyroxene, very high Fo content in olivine (90.9-92.9 mol%), high Mg# in orthopyroxene (89.8-94.2) and Cr# in spinel (39-71). REE contents show abyssal-type patterns for spinel lherzolites, while harzburgites display U-shaped patterns, typical of fore-arc settings. Spinel lherzolites REE compositions are consistent with relatively low degree (8-9%) of fractional melting of a DMM source, starting in the garnet stability field. Conversely, REE models for harzburgites indicate high melting degrees (20-25%) of a DMM mantle source under spinel faies conditions, consistent with hydrous melting in forearc setting. Plagioclase lherzolites exhibit melt impregnation microtextures, Cr- and TiO2-enriched spinels and REE, Ti, Y, Zr progressive increase with respect to spinel lherzolites. Impregnation models indicate that plagioclase lherzolites may derive from spinel lherzolites by entrapment of highly depleted MORB melts in the shallow oceanic lithosphere. Mafic intrusives are olivine gabbronorites with a very refractory composition, as attested by high Fo content of olivine (87.3-88.9 mol.%), very high Mg# of clinopyroxene (87.7-92.2) and extreme anorthitic content of plagioclase (An = 90-96 mol%). The high Mg#, low TiO2 concentrations in pyroxenes and the anorthitic composition of plagioclase point out an origin from ultra-depleted primitive magmas in a convergent setting. Geochemical trace element models show that the parental melts of gabbronorites are primitive magmas with striking depleted compositions, bearing only in part similarities with the primitive boninitic melts of Bonin Islands. The first Sr, Nd and Pb isotope data obtained for the New Caledonia ophiolite highlight the presence of DM mantle source variably modified by different processes. Nd-Sr-Pb isotopic ratios for the lherzolites (+6.98≤epsilon Ndi≤+10.97) indicate a DM source that suffered low-temperature hydrothermal reactions. Harzburgites are characterized by a wide variation of Sr, Nd and Pb isotopic values, extending from DM-type to EM2 compositions (-0.82≤ epsilon Ndi≤+17.55), suggesting that harzburgite source was strongly affected by subduction-related processes. Conversely, combined trace element and Sr-Nd-Pb isotopic data for gabbronorites indicate a derivation from a source with composition similar to Indian-type mantle, but affected by fluid input in subduction environment. These geochemical features point out an evolution in a pre-Eocenic marginal basin setting, possibly in the proximity of a transform fault, for the lherzolites. Conversely, the harzburgites acquired their main geochemical and isotopic fingerprint in subduction zone setting.
Resumo:
Mineralogical investigations have determined the sites of u and Th associated with two radioelement-enriched granites from different geological settings. In the Ririwai ring complex, Nigeria, the u- and Th-bearing accessories have been greatly affected by post-magmatic alteration of the biotite granite. Primary thorite, zircon and monazite were altered to Zr(±Y)-rich thorite, partially metamict zircon (enriched in Th, U, Y, P, Fe, Mn, Ca) and an unidentified LREE-phase respectively, by pervasive fluids which later precipitated Zr-rich coffinite. More intense, localised alteration and albitisation completely remobilised primary accessories and gave rise to a distinctive generation of haematite- and uranothorite-enriched zircon with clear, Hi-enriched rims and xenotime overgrowths. In the Ririwai lode, microclinisation and later greisenisation locally remobilised or altered zircon and deposited Y-ricl1 coffinite and Y(±Zr)-rich thorite which was overgrown by traces of xenotime and LREE-phase(s) of complex and variable composition. Compositions indicating extensive solid-solution among thorite, coffinite, xenotime and altered zircon are probably metastable and formed at low temperatures. The widespread occurrence of REE-rich fluorite suggests that F-complexing aided the mobility of REE, Y, U, Th and Zr during late-magmatic to post-magmatic alteration, while uranyl-carbonate complexing may have occurred during albitisation. The Caledonian, Helmsdale granite in northern Scotland has undergone pervasive and localised hydrothermal alteration associated with U enrichment. Zircon xenocrysts, primary sphene and apatite contain a small.proportion of this U which is largely adsorbed on to secondary iron-oxide, TiOand phyllosilicates.Additional sites for U in the overlying, Lower Devonian Ousdale arkose include coffinite, secondary uranyl phosphates, hydrocarbon and traces of xenotime and unidentified LREE-phases. U may have been leached from the granite and deposited in the arkose, along channelways associated with the Helmsdale fault, by convecting, hydrothermal fluids
Resumo:
2010 Mathematics Subject Classification: 62J99.
Resumo:
Subduction zone magmatism is an important and extensively studied topic in igneous geochemistry. Recent studies focus on from where arc magmas are generated, how subduction components (fluids or melts) are fluxed into the source of the magmas, and whether or how the subduction components affect partial melting processes beneath volcanic arcs at convergent boundaries. ^ At 39.5°S in the Central Southern Volcanic Zone of the Andes, Volcano Villarrica is surrounded by a suite of Small Eruptive Centers (SEC). The SECs are located mostly to the east and northeast of the stratovolcano and aligned along the Liquine-Ofqui Fault Zone, the major fracture system in this area. Former studies observed the geochemical patterns of the SECs differ distinctively from those of V. Villarrica and suggested there may be a relationship between the compositions of the volcanic units and their edifice sizes. This work is a comprehensive geochemical study on the SECs near V. Villarrica, using a variety of geochemical tracers and tools including major, trace and REE elements, Li-Be-B elements, Sr-Nd-Pb isotopes and short-lived isotopes such as U-series and 10Be. In this work, systematic differences between the elemental and isotopic compositions of the SECs and those of V. Villarrica are revealed and more importantly, modeled in terms of magmatic processes occurring at continental arc margins. Detailed modeling calculations in this work reconstruct chemical compositions of the primary magmas, source compositions, compositions and percentages of different subduction endmembers mixed into the source, degrees of partial melting and different time scales of the SECs and V. Villarrica, respectively. Geochemical characteristics and possible origins of the two special SECs—andesitic Llizan, with crustal signatures, and Rucapillan, to the northwest toward the trench, are also discussed in this work. ^
Resumo:
Intraplate volcanism that has created the Hawaiian-Emperor seamount chain is generally thought to be formed by a deep-seated mantle plume. While the idea of a Hawaiian plume has not met with substantial opposition, whether or not the Hawaiian plume shows any geochemical signal of receiving materials from the Earth’s Outer Core and how the plume may or may not be reacting with the overriding lithosphere remain debatable issues. In an effort to understand how the Hawaiian plume works I report on the first in-situ sulfides and bulk rock Platinum Group Element (PGE) concentrations, together with Os isotope ratios on well-characterized garnet pyroxenite xenoliths from the island of Oahu in Hawaii. The sulfides are Fe-Ni Monosulfide Solid Solution and show fractionated PGE patterns. Based on the major elements, Platinum Group Elements and experimental data I interpret the Hawaiian sulfides as an immiscible melt that separated from a melt similar to the Honolulu Volcanics (HV) alkali lavas at a pressure-temperature condition of 1530 ± 100OC and 3.1±0.6 GPa., i.e. near the base or slightly below the Pacific lithosphere. The 187Os/188Os ratios of the bulk rock vary from subchondritic to suprachondritic (0.123-0.164); and the 187Os/188Os ratio strongly correlates with major element, High Field Strength Element (HFSE), Rare Earth Element (REE) and PGE abundances. These correlations strongly suggest that PGE concentrations and Os isotope ratios reflect primary mantle processes. I interpret these correlations as the result of melt-mantle reaction at the base of the lithosphere: I suggest that the parental melt that crystallized the pyroxenites selectively picked up radiogenic Os from the grain boundary sulfides, while percolating through the Pacific lithosphere. Thus the sampled pyroxenites essentially represent crystallized melts from different stages of this melt-mantle reaction process at the base of the lithosphere. I further show that the relatively low Pt/Re ratios of the Hawaiian sulfides and the bulk rock pyroxenites suggest that, upon ageing, such pyroxenites plus their sulfides cannot generate the coupled 186Os- 187Os isotope enrichments observed in Hawaiian lavas. Therefore, recycling of mantle sulfides of pyroxenitic parentage is unlikely to explain the enriched Pt-Re-Os isotope systematics of plume-derived lavas.
Resumo:
The radiogenic isotope composition of the Rare Earth Element (REE) neodymium (Nd) is a powerful water mass proxy for present and past ocean circulation. The processes controlling the Nd budget of the global ocean are not quantitatively understood and in particular source and sink mechanisms are still under debate. In this study we present the first full water column data set of dissolved Nd isotope compositions and Nd concentrations for the Eastern Equatorial Pacific (EEP), where one of the globally largest Oxygen Minimum Zones (OMZ) is located. This region is of particular interest for understanding the biogeochemical cycling of REEs because anoxic conditions may lead to release of REEs from the shelf, whereas high particle densities and fluxes potentially remove the REEs from the water column. Data were obtained between 11400N and 161S along a nearshore and an offshore transect. Near surface zonal current bands, such as the Equatorial Undercurrent (EUC) and the Subsurface Countercurrent (SSCC), which are supplying oxygen-rich water to the OMZ are characterized by radiogenic Nd isotope signatures (eNd=-2). Surface waters in the northernmost part of the study area are even more radiogenic (eNd = +3), most likely due to release of Nd from volcanogenic material. Deep and bottom waters at the southernmost offshore station (141S) are clearly controlled by advection of water masses with less radiogenic signatures (eNd=- 7) originating from the Southern Ocean. Towards the equator, however, the deep waters show a clear trend towards more radiogenic values of up to eNd=-2. The northernmost station located in the Panama basin shows highly radiogenic Nd isotope signatures in the entire water column, which indicates that particle scavenging, downward transport and release processes play an important role. This is supported by relatively low Nd concentrations in deep waters (3000-6000 m) in the EEP (20 pmol/kg) compared to locations in the Northern and Central Pacific (40-60 pmol/kg), which suggests enhanced removal of Nd in the EEP.
Resumo:
Tephra fallout layers and volcaniclastic deposits, derived from volcanic sources around and on the Papuan Peninsula, form a substantial part of the Woodlark Basin marine sedimentary succession. Sampling by the Ocean Drilling Program Leg 180 in the western Woodlark Basin provides the opportunity to document the distribution of the volcanically-derived components as well as to evaluate their chronology, chemistry, and isotope compositions in order to gain information on the volcanic sources and original magmatic systems. Glass shards selected from 57 volcanogenic layers within the sampled Pliocene-Pleistocene sedimentary sequence show predominantly rhyolitic compositions, with subordinate basaltic andesites, basaltic trachy-andesites, andesites, trachy-andesites, dacites, and phonolites. It was possible to correlate only a few of the volcanogenic layers between sites using geochemical and age information apparently because of the formation of strongly compartmentalised sedimentary realms on this actively rifting margin. In many cases it was possible to correlate Leg 180 volcanic components with their eruption source areas based on chemical and isotope compositions. Likely sources for a considerable number of the volcanogenic deposits are Moresby and Dawson Strait volcanoes (D'Entrecasteaux Islands region) for high-K calc-alkaline glasses. The Dawson Strait volcanoes appear to represent the source for five peralkaline tephra layers. One basaltic andesitic volcaniclastic layer shows affinities to basaltic andesites from the Woodlark spreading tip and Cheshire Seamount. For other layers, a clear identification of the sources proved impossible, although their isotope and chemical signatures suggest similarities to south-west Pacific subduction volcanism, e.g. New Britain and Tonga- Kermadec island arcs. Volcanic islands in the Trobriand Arc (for example, Woodlark Island Amphlett Islands and/or Egum Atoll) are probable sources for several volcaniclastic layers with ages between 1.5 to 3 Ma. The Lusancay Islands can be excluded as a source for the volcanogenic layers found during Leg 180. Generally, the volcanogenic layers indicate much calc-alkaline rhyolitic volcanism in eastern Papua since 3.8 Ma. Starting at 135 ka, however, peralkaline tephra layers appear. This geochemical change in source characteristics might reflect the onset of a change in geotectonic regime, from crustal subduction to spreading, affecting the D'Entrecasteaux Islands region. Initial 143Nd/144Nd ratios as low as 0.5121 and 0.5127 for two of the tephra layers are interpreted as indicating that D'Entrecasteaux Islands volcanism younger than 2.9 Ma occasionally interacted with the Late Archean basement, possibly reflecting the mobilisation of the deep continental crust during active rift propagation.
Resumo:
The Atlantis Massif (Mid-Atlantic Ridge, 30°N) is an oceanic core complex marked by distinct variations in crustal architecture, deformation and metamorphism over distances of at least 5 km. We report Sr and Nd isotope data and Rare Earth Element (REE) concentrations of gabbroic and ultramafic rocks drilled at the central dome (IODP Hole 1309D) and recovered by submersible from the southern ridge of the massif that underlie the peridotite-hosted Lost City Hydrothermal Field. Systematic variations between the two areas document variations in seawater penetration and degree of fluid-rock interaction during uplift and emplacement of the massif and hydrothermal activity associated with the formation of Lost City. Homogeneous Sr and Nd isotope compositions of the gabbroic rocks from the two areas (87Sr/86Sr: 0.70261-0.70429 and epsilon-Nd: +9.1 to +12.1) indicate an origin from a depleted mantle. At the central dome, serpentinized peridotites are rare and show elevated seawater-like Sr isotope compositions related to serpentinization at shallow crustal levels, whereas unaltered mantle isotopic compositions preserved in the gabbroic rocks attest to limited seawater interaction at depth. This portion of the massif remained relatively unaffected by Lost City hydrothermal activity. In contrast, pervasive alteration and seawater-like Sr and Nd isotope compositions of serpentinites at the southern wall (87Sr/86Sr: 0.70885-0.70918; epsilon-Nd: -4.7 to +11.3) indicate very high fluid-rock ratios (~20 and up to 10**6) and enhanced fluid fluxes during hydrothermal circulation. Our studies show that Nd isotopes are most sensitive to high fluid fluxes and are thus an important geochemical tracer for quantification of water-rock ratios in hydrothermal systems. Our results suggest that high fluxes and long-lived serpentinization processes may be critical to the formation of Lost City-type systems and that normal faulting and mass wasting in the south facilitate seawater penetration necessary to sustain hydrothermal activity.
Resumo:
The studied area is situated in the northeastern extremity of the Rio Grande do Norte State, between the municipalities of Taipu and Poço Branco, and is geologically inserted into the São José do Campestre Crystalline Terrain within the Borborema Province, where the analysis of field relationships, petrographic and geochemical data allowed the distinction of three plutons named: Gameleira, Taipu and Pitombeira. The Gamaleira Pluton is composed of granodioritic rocks characterized by zoned plagioclase phenocrysts, with amphibole and biotite as the main mafic phases. Geochemically, these are metaluminous rocks of calc-alkaline nature and magnesian character. The Pitombeira Pluton encompasses two facies: (a) a coarse-grained to porphyritic monzo- to syenogranitic facies marked by K-feldspar phenocrysts; and (b) a quartz dioritic to tonalitic facies with partially zoned plagioclase laths showing chilled rims. Geochemically, rocks of the monzo- to syenogranitic facies are transitional between metaluminous and peraluminous, display a subalkaline nature (high K calc-alkaline) and a ferroan character, whereas rocks of the quartz dioritic to tonalitic facies are metaluminous, with shoshonitic affinity and ferroan character. Lastly, the Taipu Pluton is made of monzoto syenogranitic rocks with biotite as the chief mafic mineral. They are peraluminous rocks of subalkaline nature (high-K calc-alkaline) and ferroan character. Regarding the rare-earth elements (REE), it is possible to conclude that the three studied plutons display negative Eu anomalies and a relative enrichment of LREE over HREE, with LaN/YbN ratios between 9.39 to 16.20 (Gameleira Pluton), 17.99 to 31.39 (granitic facies of the Pitombeira Pluton), 14.15 to 21.81 (dioritic facies of the Pitombeira Pluton) and 15.17 to 175.41 (Taipu Pluton). Based on the combined investigation of geochemical data and discrimination tectonic diagrams, a late- to post-collisional tectonic environment is suggested for the plutons here studied
Resumo:
The ediacaran plutonic activity related to the Brasilian/Pan-African orogeny is one of the most important geological features in the Borborema Province, represented along its extension by numerous batholiths, stocks, and dikes.The object of this study, the Serra Rajada Granitic Pluton (SRGP), located in the central portion of the Piranhas-Seridó River Domain is an example of this activity. This pluton has been the subject of cartographic, petrographic, geochronological and lithogeochemical studies and its rocks were characterized by two facies. First, the granitic facies were described as monzogranites consisting of K-feldspar, plagioclase (oligoclase - An23-24%), quartz and biotite (main mafic) and opaque minerals such as titanite, allanite, apatite, and zircon as accessories. Alteration minerals are chlorite, white mica and carbonate. Second, the dioritic facies consist of rocks formed by quartz diorite containing plagioclase (dominant mineral phase), quartz and K-feldspar. Biotite and amphibole are the dominant mafic minerals; and titanite, opaque minerals, allanite, zircon and apatite are the accessories. However, previous geological mapping work in the region also identified the presence of other lithostratigraphic units. These were described as gneisses and migmatites with undifferentiated amphibolite lenses related to the Caicó Complex (Paleoproterozoic) and metasedimentary rocks of the Seridó Group (Neoproterozoic) composed of paragneiss with calc-silicate lenses, muscovite quartzite and biotite schist (respectively, the Jucurutu formations, Equador and Seridó), the host rocks for the SRGP rocks. Leucomicrogranite and pegmatite dikes have also been identified, both related to the end of the Ediacaran magmatism and colluvial- eluvial and alluvial deposits related to Neogene and Quaternary, respectively. Lithogeochemical data on the SRGP granite facies, highlighted quite evolved rocks (SiO2 69% to 75%), rich in alkalis (Na2O+K2O ≥ 8.0%), depleted of MgO (≤ 0.45%), CaO (≤ 1.42%) and TiO2 (≤ 0.36%) and moderate levels of Fe2O3t (2.16 to 3.53%). They display transitional nature between metaluminous and peraluminous (predominance of the latter) with sub-alkaline/monzonitic (High K calcium-alkali) affinity. Harker diagrams show negative correlations for Fe2O3t, MgO, and CaO, indicating mafic and plagioclase fractionation. REE spectrum shows enrichment of LREE relative to heavy REE (LaN/YbN = 23.70 to 10.13), with negative anomaly in the Eu (Eu/Eu* = 0.70 to 0.23), suggesting fractionation or accumulation in the feldspars source (plagioclase). Data integration allows to correlate the SRGP rocks with those described as Calcium-Alkaline Suite of equigranular High K. The crystallization conditions of the SRGP rocks were determined from the integration of petrographic and lithogeochemical data. These data indicated intermediate to high conditions of ƒO2 (mineral paragenesis titanite + magnetite + quartz), parent magma saturated in H2O (early biotite crystallization), tardi-magmatic processes of fluids rich in ƒCO2, H2O and O2 causing part of the mineral assembly to change (plagioclase carbonation and saussuritization, biotite chloritization and opaques Sphenitization). Thermobarometrical conditions were estimated based on geochemical parameters (Zr and P2O5) and CIPW normative minerals, with results showing the liquidus minimum temperature of about800°C and the solidus temperature of approximately 700°C. The final/minimum crystallization pressure are suggested to be between 3 and 5 Kbar. The presence of zoned minerals (plagioclase and allanite) associated with lithogeochemical data in bi-log diagrams for Rb vs. Ba and Rb vs. Sr suggest the role of fractional crystallization as the dominant process in the magmatic evolution of SRGP. U-Pb Geochronological and Sm-Nd isotope studies indicated, respectively, the crystallization age of biotite monzogranite as 557 ± 13 Ma, with TDM model age of 2.36 Ga, and εNd value of -20.10 to the crystallization age, allowing to infer paleoproterozoic crustal source for the magma.
Resumo:
The ediacaran plutonic activity related to the Brasilian/Pan-African orogeny is one of the most important geological features in the Borborema Province, represented along its extension by numerous batholiths, stocks, and dikes.The object of this study, the Serra Rajada Granitic Pluton (SRGP), located in the central portion of the Piranhas-Seridó River Domain is an example of this activity. This pluton has been the subject of cartographic, petrographic, geochronological and lithogeochemical studies and its rocks were characterized by two facies. First, the granitic facies were described as monzogranites consisting of K-feldspar, plagioclase (oligoclase - An23-24%), quartz and biotite (main mafic) and opaque minerals such as titanite, allanite, apatite, and zircon as accessories. Alteration minerals are chlorite, white mica and carbonate. Second, the dioritic facies consist of rocks formed by quartz diorite containing plagioclase (dominant mineral phase), quartz and K-feldspar. Biotite and amphibole are the dominant mafic minerals; and titanite, opaque minerals, allanite, zircon and apatite are the accessories. However, previous geological mapping work in the region also identified the presence of other lithostratigraphic units. These were described as gneisses and migmatites with undifferentiated amphibolite lenses related to the Caicó Complex (Paleoproterozoic) and metasedimentary rocks of the Seridó Group (Neoproterozoic) composed of paragneiss with calc-silicate lenses, muscovite quartzite and biotite schist (respectively, the Jucurutu formations, Equador and Seridó), the host rocks for the SRGP rocks. Leucomicrogranite and pegmatite dikes have also been identified, both related to the end of the Ediacaran magmatism and colluvial- eluvial and alluvial deposits related to Neogene and Quaternary, respectively. Lithogeochemical data on the SRGP granite facies, highlighted quite evolved rocks (SiO2 69% to 75%), rich in alkalis (Na2O+K2O ≥ 8.0%), depleted of MgO (≤ 0.45%), CaO (≤ 1.42%) and TiO2 (≤ 0.36%) and moderate levels of Fe2O3t (2.16 to 3.53%). They display transitional nature between metaluminous and peraluminous (predominance of the latter) with sub-alkaline/monzonitic (High K calcium-alkali) affinity. Harker diagrams show negative correlations for Fe2O3t, MgO, and CaO, indicating mafic and plagioclase fractionation. REE spectrum shows enrichment of LREE relative to heavy REE (LaN/YbN = 23.70 to 10.13), with negative anomaly in the Eu (Eu/Eu* = 0.70 to 0.23), suggesting fractionation or accumulation in the feldspars source (plagioclase). Data integration allows to correlate the SRGP rocks with those described as Calcium-Alkaline Suite of equigranular High K. The crystallization conditions of the SRGP rocks were determined from the integration of petrographic and lithogeochemical data. These data indicated intermediate to high conditions of ƒO2 (mineral paragenesis titanite + magnetite + quartz), parent magma saturated in H2O (early biotite crystallization), tardi-magmatic processes of fluids rich in ƒCO2, H2O and O2 causing part of the mineral assembly to change (plagioclase carbonation and saussuritization, biotite chloritization and opaques Sphenitization). Thermobarometrical conditions were estimated based on geochemical parameters (Zr and P2O5) and CIPW normative minerals, with results showing the liquidus minimum temperature of about800°C and the solidus temperature of approximately 700°C. The final/minimum crystallization pressure are suggested to be between 3 and 5 Kbar. The presence of zoned minerals (plagioclase and allanite) associated with lithogeochemical data in bi-log diagrams for Rb vs. Ba and Rb vs. Sr suggest the role of fractional crystallization as the dominant process in the magmatic evolution of SRGP. U-Pb Geochronological and Sm-Nd isotope studies indicated, respectively, the crystallization age of biotite monzogranite as 557 ± 13 Ma, with TDM model age of 2.36 Ga, and εNd value of -20.10 to the crystallization age, allowing to infer paleoproterozoic crustal source for the magma.
Resumo:
The Serra do Caramuru and Tapuio stocks, located in the extreme NE of Rio Piranhas-Seridó Domain (RN), are representative of the Ediacaran-Cambrian magmatism, an important magmatic feature of the Brasilian / Panafrican orogeny of the Borborema Province. These bodies are lithologically similar, intrusive in paleoproterozoic gneiss embasement, being separated by a thin belt of mylonitic orthogneiss. The field relations show a magmatic stratigraphy initiated by dioritic facies that coexists with the porphyritic granitic and equigranular granitic I facies, and less frequently with equigranular granitic II facies. These rocks are crosscut by late granitic dykes and sheets with NE-SW / NNE-SSW orientation. The dioritic facies (diorite, quartz diorite, quartz monzodiorites, tonalite and granodiorite) is leucocratic to melanocratic, rich in biotite and hornblende. The granitic facies are hololeucocratic to leucocratic, and have biotite ± hornblende. Petrographic and geochemical (whole rock) data, especially from Serra do Caramuru pluton, suggest fractionation of zircon, apatite, clinopyroxene (in diorites), opaque minerals, titanite, biotite, hornblende, allanite, plagioclase, microcline and garnet (in dykes). The behavior of trace elements such as Zr, La and Yb indicates that the dioritic magma does not constitute the parental magma for the granitic facies. On the other hand, the granitic facies seems to be cogenetic to each other, displaying differentiation trends and very similar rare earth elements (REE) spectra [12.3≤(La/Yb)N≤190.8; Eu/Eu*=0.30-0.68]. Field relationships and REE patterns [6.96≤(La/Yb)N≤277.8; Eu/Eu*=0.18-0.58] demonstrate that the granitic dykes and sheets are not cogenetically related to the Serra do Caramuru magmatism. The dioritic facies is metaluminous (A/CNK = 0.88-0.74) and shoshonitic, whereas the granitic ones are metaluminous to peraluminous (A/CNK = 1.08-0.93) and high potassium calc-alkaline. Dykes and sheets are strictly peraluminous (A/CNK = 1.01-1.04). Binary diagrams relating compatible and incompatible trace elements and microtextures indicate the fractional crystallization as the dominant mechanism of magmatic evolution of the various facies. The Serra do Caramuru and Tapuio stocks have well preserved magmatic fabric, do not show metamorphic minerals and are structurally isotropic, showing crosscutting contact with the ductile fabric of the basement. These observations lead to interpretate a stage of relative tectonic stability, consistent with the orogenic relaxation period of the Brasiliano / Pan-African orogeny. Chemical plots involving oxides and trace elements indicate late to post-collisional emplacement. In this context, the assumed better mechanism to describe the stocks emplacement within an extensional T Riedel joint, with ENE-WSW extensional vector. The U-Pb zircon age of 553 ± 10 Ma allows correlating the Serra do Caramuru magmatism to the group of post-collisional bodies, equigranular high potassium calc-alkaline granites of the NE of Rio Piranhas-Seridó Domain.