974 resultados para Chemical elements
Resumo:
Concentrations and compositions of rare earth elements (REE) in three micronodule fractions (50-250, 250-500, and >500 ?m), coexisting macronodules, and host sediments were studied. Samples were collected at three sites (Guatemala Basin, Peru Basin, and northern equatorial Pacific) located in elevated bioproductivity zones of surface waters. Influence of micronodule size is dominant for REE compositions and subordinate for REE concentrations. For example, Ce concentration inversely correlates with micronodule size and drops to the lowest value in macronodules and host sediments. Decrease of Ce concentration is generally accompanied by Mn/Fe increase in micro- and macronodules. Hence, the role of diagenetic source of material directly correlates with micronodule sizes. Contribution of the diagenetic source is maximal for macronodules. REE composition distinctions for micronodules and macronodules can be attributed to variations of hydrogenic iron oxyhydroxides and diagenetic (hydrothermal) iron hydroxophosphates that are the major REE carriers in ferromanganese ore deposits. Relationship and general trend in chemistry of coexisting macronodules suggest that they can represent products of the initial stage of nodule formation.
Resumo:
Deep sea manganese nodules from the Southern Ocean have been studied using chemical analysis, X-ray diffraction, optical mineragraphic and electron probe microanalysis techniques. The nodules were lower in manganese, iron and associated elements than the average grade of manganese nodules from other localities. A number of chemical relationships have been observed. Nickel, copper, cobalt, barium, zinc, molybdenum, strontium, sulphur and phosphorus are associated with the manganese rich phases and titanium with the iron rich phases. X-ray diffraction analysis and electron probe microanalysis results indicate that the manganese phases are similar to the disordered delta-MnO2 and "manganite" phases reported by other workers.
Resumo:
The carbonate-free metalliferous fraction of thirty-nine sediment samples from four DSDP Leg 92 sites has been analyzed for 12 elements, and a subset of 16 samples analyzed for Pb isotopic composition. The main geochemical features of this component are as follows: i) very high concentrations of Fe and Mn, typically 25-39% and 5-14%, respectively; ii) Al and Ca contents generally less than 2% and 5%, respectively; iii) high Cu (1000-2000 ppm), and Zn and Ni (500-1000 ppm) values; and iv) Co and Pb concentrations of 100-250 ppm. In terms of element partitioning within the metalliferous fraction, amorphous to poorly crystallized oxide-oxyhydroxides removed by the second leach carry virtually all of the Mn, and about 90% of the Ca, Sr and Ni. The well-crystallized goethite-rich material removed by the third leach carries the majority of Fe, Cu, and Pb. These relations hold for sediments as young as ~1-2 Ma, indicating early partitioning of hydrothermal Fe and Mn into separate phases. Calculated mass accumulation rates (MAR) for Fe, Mn, Cu, Pb, Zn and Ni in the bulk sediment show the same overall trends at three of the sites, with greatest MAR values near the basement, and a general decrease in MAR values towards the tops of the holes (for sediments deposited above the lysocline). These relations strongly support the concept of a declining hydrothermal contribution of these elements away from a ridge axis. Nevertheless, MAR values for these metals up to ~200 km from the ridge axis are orders of magnitude higher than on abyssal seafloor plains where there is no hydrothermal influence. Mn/Fe ratios throughout the sediment column at two sites indicate that the composition of the hydrothermal precipitates changed during transport through seawater, becoming significantly depleted in Mn beyond ~200-300 km from the axis, but maintaining roughly the same proportion of Fe. Most of the Pb isotope data for the Leg 92 metalliferous sediments form approximately linear arrays in the conventional isotopic plots, extending from the middle of the field for mid-ocean ridge basalts toward the field for Mn nodules. The array of data lying between these two end-members is most readily interpreted in terms of simple linear mixing of Pb derived from basaltic and seawater end-member sources. The least radiogenic sediments reflect the average Pb isotope composition of discharging hydrothermal solutions and ocean-ridge basalt at the EPR over the ~4-8 Ma B.P. interval. Pb in sediments deposited up to 250 km from the axis can be almost entirely of basaltic-hydrothermal origin. Lateral transport of some basaltic Pb by ocean currents appears to extend to distances of at least 1000 km west of the East Pacific Rise.
Resumo:
Mid-ocean-ridge basalts recovered from Hole 1256D during Ocean Drilling Program Leg 206 exhibit the effects of various low-temperature (<100°C) alteration processes, including the formation of black or dark green alteration halos adjacent to celadonite-bearing veins. In several samples from the deepest basalts, a Ti-rich hydrogarnet occurs. To our knowledge, such a mineral has never been reported in the oceanic crust. This report presents a brief description and microprobe analyses of this hydrogarnet and associated celadonite. More detailed characterizations of this mineral and a description of its relationship to other secondary minerals will be undertaken in a future study, in an attempt to determine the mineral's formation conditions and its place in the general alteration history of the Hole 1256D basalts.
Resumo:
Authigenic carbonates forming at an active methane-seep on the Makran accretionary prism mainly consist of aragonite in the form of microcrystalline, cryptocrystalline, and botryoidal phases. The d13Ccarbonate values are very negative (-49.0 to -44.0 per mill V-PDB), agreeing with microbial methane as dominant carbon source. The d18Ocarbonate values are exclusively positive (+ 3.0 to + 4.5 per mill V-PDB) and indicate precipitation in equilibrium with seawater at bottom water temperatures. The content of rare earth elements and yttrium (REE + Y) determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and solution ICP-MS varies for each aragonite variety, with early microcrystalline aragonite yielding the highest, cryptocrystalline aragonite intermediate, and later botryoidal aragonite the lowest REE + Y concentrations. Shale-normalised REE + Y patterns of different types of authigenic carbonate reflect distinct pore fluid compositions during precipitation: Microcrystalline aragonite shows high contents of middle rare earth elements (MREE), reflecting REE patterns ascribed to anoxic pore water. Cryptocrystalline aragonite exhibits a seawater-like REE + Y pattern at elevated total REE + Y concentrations, indicating higher concentrations of REEs in pore waters, which were influenced by seawater. Botryoidal aragonite is characterised by seawater-like REE + Y patterns at initial growth stages followed by an increase of light rare earth elements (LREE) with advancing crystal growth, reflecting changing pore fluid composition during precipitation of this cement. Conventional sample preparation involving micro-drilling of carbonate phases and subsequent solution ICP-MS does not allow to recognise such subtle changes in the REE + Y composition of individual carbonate phases. To be able to reconstruct the evolution of pore water composition during early diagenesis, an analytical approach is required that allows to track the changing elemental composition in a paragenetic sequence as well as in individual phases. High-resolution analysis of seep carbonates from the Makran accretionary prism by LA-ICP-MS reveals that pore fluid composition not only evolved in the course of the formation of different phases, but also changed during the precipitation of individual phases.
Resumo:
Mineral and chemical compositions, as well as conditions of formation of clay sediments in major structural elements of the Pacific Ocean floor with different ages are under consideration in the monograph. Depending on evolution of the region two ways of clay sediment formation are identified: terrigenous and authigenic. It is shown that terrigenous clay sediments predominate in marginal parts of the Pacific Ocean. Authigenic mineral formation occurring in the basal part of the sedimentary cover primarily results from removal of material from underlying basalts. This material is released during secondary alteration of the basalts due to their interaction with sea water, as well as with deep solutions.
Resumo:
Sediments in the area of the Galapagos hydrothermal mounds are divided into two major categories. The first group, pelagic sediments, are nannofossil oozes with varying amounts of siliceous microfossils. The second group are hydrothermal sediments consisting of manganese-oxide crust fragments and green nontronitic clay granules. Hydrothermal sediments occur only in the upper half to two-thirds of the cores and are interbedded and mixed with pelagic sediments. Petrologic evidence indicates that hydrothermal nontronite forms as both a primary precipitate and as a replacement mineral of pre-existing pelagic sediment and hydrothermal manganese-oxide crust fragments. In addition, physical evidence supports chemical equations indicating that the pelagic sediments are being dissolved by hydrothermal solutions. The formation of hydrothermal nontronite is not merely confined to the surface of mounds, but also occurs at depth within their immediate area; hydrothermal nontronite is very likely forming today. Geologically speaking, the mounds and their hydrothermal sediments form almost instantaneously. The Galapagos mounds area is a unique one in the ocean basins, where pelagic sediments can be diagenetically transformed, dissolved, and replaced, possibly within a matter of years.
Resumo:
Distributions of Mn, Fe, Cu, Cd, Cr, Co and Ni in sea water are investigated (42 samples, dissolved and particulate forms) in the vicinity of the underwater gas vent field on the northwestern slope of the Paramushir Island. While regular background distributions of the elements occur in the shore zone, there is a column of elevated concentrations of particulate matter, particulate Mn, and dissolved Mn, Fe, Cu, Cd, Cr, Co and Ni that coincides with location of the gas plume. This column can be traced as high as 780 m above the bottom. High metal concentrations in water of the plume are attributable to physico-chemical concentration at the phase interface; the source of elevated mineral concentrations is obviously flux of dissolved minerals from interstitial waters, which extends to considerable distances in vertical direction.
Resumo:
Results of a study of contents and accumulation rates of Fe, Mn, and some trace elements in Upper Quaternary sediments of the Deryugin Basin are presented. Maps of average contents and accumulation rates of excessive Fe, Mn, Zn, Ba, Ni, Pb, Cu, and Mo in sediments of the first oxygen isotope stage (OIS) have been plotted. Anomalous contents and accumulation rates are confined to peripheral zones of the Deryugin sedimentary basin and large fracture zones. Different mechanisms of influence of fluid-dynamic processes on rate of hydrogenic and biogenic accumulation of ore elements are assumed.
(Table 2, page 277), Major and trace elements geochemical analysis of the layers of the TECHNO crust
Resumo:
Comprehensive investigations revealed that modern deposits in the northern Caspian Sea involve terrigenous sands and aleurites with admixture of detritus and intact bivalve shells, including coquina. Generally, these deposits overlay dark grayish viscous clays. Similar geological situation occurs in the Volga River delta; however, local deposits are much poorer in biogenic constituents. Illite prevails among clay minerals. In coarse aleurite fraction (0.100-0.050 mm) heavy transparent minerals are represented mostly by epidotes, while light minerals - mostly by quartz and feldspars. Sedimentary material in the Volga River delta is far from completely differentiated into fractions due to abundant terrigenous inflows. Comparatively better grading of sediments from the northern Caspian Sea is due to additional factors such as bottom currents and storms. When passing from the Volga River delta to the northern Caspian Sea, sediments are enriched in rare earth elements (except Eu), Ca, Au, Ni, Se, Ag, As, and Sr, but depleted in Na, Rb, Cs, K, Ba, Fe, Cr, Co, Sc, Br, Zr, ??, U, and Th. Concentrations of Zn remain almost unchanged. Sedimentation rates and types of recent deposits in the northern Caspian Sea are governed mainly by abundant runoff of the Volga River.
Resumo:
We studied the diagenetic behavior of rare earth elements (REEs) in a highly productive passive margin setting of the Bering Sea Slope. Site U1345 was drilled during the Integrated Ocean Drilling Program Expedition 323 at a water depth of 1008 m currently in the center of an oxygen minimum zone. Pore water concentrations of fourteen REEs were determined down to ~ 140 meters below the seafloor (mbsf). The REE concentrations were higher in the pore water than the deep seawater, indicating that there was significant liberation from the sediments during diagenesis. There was a major peak at ~ 10 mbsf that was more pronounced for the heavy REE (HREE); this peak occurred below the sulfate-methane transition zone (6.3 mbsf) and coincided with high concentrations of dissolved iron and manganese. At ~ 2 mbsf, there was a minor peak in REE and Mn contents. Below ~ 40 mbsf, the REE concentration profiles remained constant. The Ce anomaly was insignificant and relatively constant (PAAS-normalized Ce/Ce = 1.1 ± 0.2) throughout the depth profile, showing that the Ce depleted in seawater was restored in the pore water. HREE-enrichment was observed over the entire 140 m except for the upper ~ 1 m, where a middle REE (MREE)-bulge was apparent. REE release in shallow depths (2-4 mbsf) is attributed to the release of light REEs (LREEs) and MREEs during the organoclastic reduction of Mn oxides in anoxic sediments. The high HREE concentrations observed at ~ 10 mbsf can be attributed to the reduction of Fe and Mn minerals tied to anaerobic oxidation of methane or, less significantly, to ferromagnesian silicate mineral weathering. The upward diffusion flux across the sediment-water interface was between 3 (for Tm) and 290 (for Ce) pmol/m**2/y.
Resumo:
Ferromanganese concretions spread out on the bottom of the shallow northwest part of the Black Sea are mainly represented by Fe and Mn nodules on shells and substituted worm tubes. Element composition of these formations was measured by methods of chemical, atomic absorbtion, neutron activation, and ICP-MS analyses. It was established that Fe and Mn contents and Mn/Fe ratio in the concretions varied considerably and which controlled occurrence of several associated metals and minor elements; some of them have not been studied in Black Sea concretions before.
Resumo:
Rare earth element (REE), major, and trace element abundances and relative fractionations in forty nodular cherts sampled by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) indicate that the REE composition of chert records the interplay between terrigenous sources and scavenging from the local seawater. Major and (non-REE) trace element ratios indicate that the aluminosilicate fraction within the chert is similar to NASC (North American Shale Composite), with average Pacific chert including ~7% NASC-like particles, Indian chert ~11% NASC, Atlantic chert ~17% NASC, and southern high latitude (SHL) chert 53% NASC. Using La as a proxy for sum REE, approximations of excessive La (the amount of La in excess of that supplied by the detrital aluminosilicate fraction) indicate that Pacific chert contains the greatest excessive La (85% of total La) and SHL chert the least (38% of total La). As shown by interelement associations, this excessive La is most likely an adsorbed component onto aluminosilicate and phosphatic phases. Accordingly, chert from the large Pacific Ocean, where deposition occurs relatively removed from significant terrigenous input, records a depositional REE signal dominated by adsorption of dissolved REEs from seawater. Pacific chert Ce/Ce* <<1 and normative La/Yb ~ 0.8-1, resulting from adsorption of local Ce-depleted seawater and preferential adsorption of LREEs from seawater (e.g., normative La/Yb ~0.4), which increases the normative La/Yb ratio recorded in chert. Chert from the Atlantic basin, a moderately sized ocean basin lined by passive margins and with more terrigenous input than the Pacific, records a mix of adsorptive and terrigenous REE signals, with moderately negative Ce anomalies and normative La/Yb ratios intermediate to those of the Pacific and those of terrigenous input. Chert from the SHL region is dominated by the large terrigenous input on the Antarctic passive margin, with inherited Ce/Ce* ~1 and inherited normative La/Yb values of ~1.2-1.4. Ce/Ce* does not vary with age, either throughout the entire data base or within a particular basin. Overall, Ce/Ce* does not correlate with P2O5 concentrations, even though phosphatic phases may be an important REE carrier.