912 resultados para Chemical Characterization
Resumo:
In this work, the influences of CCl4 on the metalorganic chemical vapor deposition (MOCVD) growth of InN were studied for the first time. It was found that the addition of CCl4 can effectively suppress the formation of metal indium (In) droplets during InN growth, which was ascribed to the etching effect of Cl to In. However, with increasing of CCl4 flow, the InN growth rate decreased but the lateral growth of InN islands was enhanced. This provides a possibility of promoting islands coalescence toward a smooth surface of the InN film by MOCVD. The influence of addition of CCl4 on the electrical properties was also investigated.
Resumo:
Polymorphous silicon (pm-Si:H) films have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the pm-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. There are a blue shift for the stretching mode of IR spectra and a red shift for the wagging mode. The shifts are attributed to the variation of the microstructure. By using pm-Si:H film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100mw/cm(2)) at room temperature (T-R).
Resumo:
A series of hydrogenated amorphous silicon carbide (a-Si1-xCx:H) films were prepared by plasma-enhanced chemical vapour deposition (PECVD) using a gas mixture of silane, methane, and hydrogen as the reactive source. The previous results show that a high excitation frequency, together with a high hydrogen dilution ratio of the reactive gases, allow an easier incorporation of the carbon atoms into the silicon-rich a-Si1-xCx:H film, widen the valence controllability. The data show that films with optical gaps ranging from about 1.9 to 3.6 eV could be produced. In this work the influence of the hydrogen dilution ratio of the reactive gases on the a-Si1-xCx:H film properties was investigated. The microstuctural and photoelectronic properties of the silicon carbide films were characterized by Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), and FT-IR spectrometry. The results show that a higher hydrogen dilution ratio enhances the incorporation of silicon atoms in the amorphous carbon matrix for carbon-rich a-Si1-xCx:H films. One pin structure was prepared by using the a-Si1-xCx:H film as the intrinsic layer. The light spectral response shows that this structure fits the requirement for the top junction of colour sensor. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Hall, current-voltage, and deep-level transient spectroscopy measurements were used to characterize the electrical properties of metalorganic chemical vapor deposition grown undoped, Er- and Pr-implanted GaN films. Only one deep level located at 0.270 eV below the conduction band was found in the as-grown GaN films. However, four defect levels located at 0.300, 0.188, 0.600, and 0.410 eV below the conduction band were found in the Er-implanted GaN films after annealing at 900 degrees C for 30 min, and four defect levels located at 0.280, 0.190, 0.610, and 0.390 eV below the conduction band were found in the Pr-implanted GaN films after annealing at 1050 degrees C for 30 min. The origins of the deep defect levels are discussed. (C) 2005 American Institute of Physics.
Resumo:
Metalorganic chemical vapor deposition growth of InN on sapphire substrate has been investigated between 400 degrees C and 500 degrees C to seek the growth condition of InN buffer layer, i.e. the first step of realization of the two-step growth method. Ex situ characterization of the epilayers by means of atomic force microscope, scanning electron microscope and X-ray diffraction, coupled with in situ reflectance curves, has revealed different growth circumstances at these temperatures, and conclusion has been reached that the most suitable temperature for buffer growth is around 450 degrees C. In addition, the growth rate of InN at the optimized temperature with regard to different precursor flow rates is studied at length. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The GaN film was grown on the (111) silicon-on-insulator (SOI) substrate by metal-organic chemical vapor deposition and then annealed in the deposition chamber. A multiple beam optical stress sensor was used for the in-situ stress measurement, and X-ray diffraction (XRD) and Raman spectroscopy were used for the characterization of GaN film. Comparing the characterization results of the GaN films on the bulk silicon and SOI substrates, we can see that the Raman spectra show the 3.0 cm(-1) frequency shift of E-2(TO), and the full width at half maximum of XRD rocking curves for GaN (0002) decrease from 954 arc see to 472 are sec. The results show that the SOI substrates can reduce the tensile stress in the GaN film and improve the crystalline quality. The annealing process is helpful for the stress reduction of the GaN film. The SOI substrate with the thin top silicon film is more effective than the thick top silicon film SOI substrate for the stress reduction. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report the growth of hexagonal ZnO nanorods and nanoflowers on GaN-based LED epiwafer using a solution deposition method. We also discuss the mechanisms of epitaxial nucleation and of the growth of ZnO nanorods and nanoflowers. A GaN-based LED epiwafer was first deposited on a sapphire substrate by MOCVD with no electrode being fabricated on it. Vertically aligned ZnO nanorods with an average height of similar to 2.4 mu m were then grown on the LED epiwafer, and nanoflowers were synthesized on the nanorods. The growth orientation of the nanorods was perpendicular to the surface, and the synthesized nanoflowers were composed of nanorods. The micro-Raman spectra of the ZnO nanorods and nanoflowers are similar and both exhibit the E-2 (high) mode and the second-order multiple-phonon mode. The photoluminescence spectrum of ZnO nanostructures exhibits ultraviolet emission centred at about 380 nm and a broad and enhanced green emission centred at about 526 nm. The green emission of the ZnO nanostructures combined with the emission of InGaN quantum wells provides a valuable method to improve the colour rendering index (CRI) of LEDs.
Resumo:
A new AlGaN/AlN/GaN high electron mobility transistor (HEMT) structure using a compositionally step-graded AlGaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high Al composition AlGaN barrier. The high 2DEG mobility of 1806 cm(2)/Vs at room temperature and low rms surface roughness of 0.220 nm for a scan area of 5 mu m x 5 mu m are attributed to the improvement of interfacial and crystal quality by employing the step-graded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5 Omega/square, with a good resistance uniformity of 0.68%, is also obtained across the 50 mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218 mS/mm and a maximum drain current density of 800 mA/mm.
Resumo:
High resistivity unintentionally doped GaN films were grown on (0001) sapphire substrates by metalorganic chemical vapor deposition. The surface morphology of the layer was measured by both atomic force microscopy and scanning electron microscopy. The results show that the films have mirror-like surface morphology with root mean square of 0.3 nm. The full width at half maximum of double crystal X-ray diffraction rocking curve for (0002) GaN is about 5.22 arc-min, indicative of high crystal quality. The resistivity of the GaN epilayers at room temperature and at 250 degrees C was measured to be approximate 10(9) and 10(6) Omega(.)cm respectively, by variable temperature Hall measurement. Deep level traps in the GaN epilayers were investigated by thermally stimulated current and resistivity measurements.
Resumo:
X-ray diffraction and Rutherford backscattering/channeling were used to characterize the crystalline quality of an InN layer grown on Al2O3(0001) Using metal-organic chemical-vapor deposition. A full width at half maximum of 0.27 degrees from an InN(0002) omega scan and a minimum yield of 23% from channeling measurements show that this 480-nm-thick InN layer grown at low temperature (450 degrees C) has a relatively good crystalline quality. High-resolution x-ray diffraction indicates that the InN layer contains a small fraction of cubic InN, besides the predominant hexagonal phase. From this InN sample, the lattice constants a=0.353 76 nm and c=0.570 64 nm for the hexagonal InN and a=0.4986 nm for the cubic InN were determined independently. 2 theta/omega-chi mapping and a pole figure measurement revealed that the crystallographic relationship among the cubic InN, the hexagonal InN, and the substrate is: InN[111]parallel to InN[0001]parallel to Al2O3[0001] and InN{110}parallel to InN{1120}parallel to Al2O3{1010}, and that the cubic InN is twinned. Photoluminescence measurements indicate that the band-gap energy of this sample is approximately 0.82 eV. (c) 2006 American Vacuum Society.
Resumo:
Hydrogenated silicon (Si:H) films near the threshold of crystallinity were prepared by very high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) using a wide range of hydrogen dilution R-H = [H-2]/[SiH4] values of 2-100. The effects of H dilution R-H on the structural properties of the films were investigated using micro-Raman scattering and Fourier transform infrared (FTIR) absorption spectroscopy. The obtained Raman spectra show that the H dilution leads to improvements in the short-range order and the medium-range order of the amorphous network and then to the morphological transition from amorphous to crystalline states. The onset of this transition locates between R-H = 30 and 40 in our case, and with further increasing R-H from 40 to 100, the nanocrystalline volume fraction increases from similar to23% to 43%, and correspondingly the crystallite size enlarges from similar to2.8 to 4.4 nm. The FTIR spectra exhibit that with R-H increasing, the relative intensities of both the SiH stretching mode component at 2100 cm(-1) and wagging mode component at 620 cm(-1) increase in the same manner. We assert that these variations in IR spectra should be associated with the formation of paracrystalline structures in the low H dilution films and nanocrystalline structures in the high H dilution films. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
High-quality nc-Si/a-Si:H diphasic films with improved stability were prepared by using the plasma-enhanced chemical vapor deposition technology. In comparison with typical amorphous silicon, the diphasic silicon films possess higher photoconductivity (two orders larger than that of the amorphous silicon film) and fairly good photosensitivity(the ratio of the photo-to dark-conductivity is about 10) and higher stability (the degradation of the photoconductivity is less than 10% after 24h long light soaking with 50 mW/cm(2) intensity at room temperature). In addition, the diphasic silicon film has a better light spectra response in the longer wavelength range. The improvement in photoelectronic properties may be attributed to: the existence of the disorder within the amorphous matrix, which breaks the momentum selection rule in the optical transition and, consequently, results in the large light absorption coefficient and high photosensitivity; the improved medium range order and low gap states density. Excess carriers generated in the amorphous matrix tend to recombine in the embedded crystallites, which suppresses nonradiative recombination within the amorphous matrix and reduces the subsequent defect creation.
Resumo:
The growth of SiC epilayers on C-face (0 0 0 1) sapphire (alpha-Al2O3) has been performed using CVD method. We found that the quality of SiC epilayers has been improved through the nitridation of substrates by exposing them to ammonia ambient, as compared to growth on bare sapphire substrates. The single crystallinity of these layers was verified by XRD and double crystal XRD measurements. Atomic force microscopy was used to evaluate the surface morphology. Infrared reflectivity and Raman scattering measurement were carried out to investigate the phonon modes in the grown SiC. Detailed Raman analysis identified the 6H nature of the as-grown SiC films. (C) 2002 Elsevier Science B.V. All rights reserved.
Structural characterization of epitaxial lateral overgrown GaN on patterned GaN/GaAs(001) substrates
Resumo:
Epitaxial lateral overgrown (ELO) cubic GaN (c-GaN) on SiO2 patterned GaN/GaAs(0 0 1) substrates by metalorganic vapor phase epitaxy was investigated using transmission electron microscopy and X-ray diffraction (XRD) measurements. The density of stacking faults (SFs) in ELO c-GaN was similar to6 x 10(8) cm(-2), while that in underlying GaN template was similar to5 x 10(9) cm(-2). XRD measurements showed that the full-width at half-maximum of c-GaN (0 0 2) rocking curve decreased from 33 to 17.8 arcmin, indicating the improved crystalline quality of ELO c-GaN. The mechanism of SF reduction in ELO c-GaN was also discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A kind of hydrogenated diphasic, silicon films has been prepared by a new regime of plasma enhanced chemical vapor deposition (PECVD) in the region adjacent to the phase transition from amorphous to crystalline state. The photoelectronic and microstructural properties of the films have been investigated by the constant photocurrent method (CPM), Raman scattering and nuclear magnetic resonance (NMR). Our experimental results and corresponding analyses showed that the diphasic films, incorporated with a subtle boron compensation, could gain both the fine photosensitivity and high stability, provided the crystalline fraction (f) was controlled in the range of 0 < f < 0.3. When compared with the conventional hydrogenated amorphous silicon (a-Si:H), the diphasic films are more ordered and robust in the microstructure, and have a less clustered phase in the Si-H bond configurations. (C) 2002 Elsevier Science Ltd. All rights reserved.