1000 resultados para Channel Iron Deposits
Resumo:
In this paper, we introduce a pilot-aided multipath channel estimator for Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems. Typical estimation algorithms assume the number of multipath components and delays to be known and constant, while theiramplitudes may vary in time. In this work, we focus on the more realistic assumption that also the number of channel taps is unknown and time-varying. The estimation problem arising from this assumption is solved using Random Set Theory (RST), which is a probability theory of finite sets. Due to the lack of a closed form of the optimal filter, a Rao-Blackwellized Particle Filter (RBPF) implementation of the channel estimator is derived. Simulation results demonstrate the estimator effectiveness.
Resumo:
We study the minimum mean square error (MMSE) and the multiuser efficiency η of large dynamic multiple access communication systems in which optimal multiuser detection is performed at the receiver as the number and the identities of active users is allowed to change at each transmission time. The system dynamics are ruled by a Markov model describing the evolution of the channel occupancy and a large-system analysis is performed when the number of observations grow large. Starting on the equivalent scalar channel and the fixed-point equation tying multiuser efficiency and MMSE, we extend it to the case of a dynamic channel, and derive lower and upper bounds for the MMSE (and, thus, for η as well) holding true in the limit of large signal–to–noise ratios and increasingly large observation time T.
Resumo:
For single-user MIMO communication with uncoded and coded QAM signals, we propose bit and power loading schemes that rely only on channel distribution information at the transmitter. To that end, we develop the relationship between the average bit error probability at the output of a ZF linear receiver and the bit rates and powers allocated at the transmitter. This relationship, and the fact that a ZF receiver decouples the MIMO parallel channels, allow leveraging bit loading algorithms already existing in the literature. We solve dual bit rate maximization and power minimization problems and present performance resultsthat illustrate the gains of the proposed scheme with respect toa non-optimized transmission.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.
Resumo:
Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.
Resumo:
Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.
Resumo:
Objective: To assess the level of hemoglobin-Hb during pregnancy before and after fortification of flours with iron. Method: A cross-sectional study with data from 12,119 pregnant women attended at a public prenatal from five macro regions of Brazil. The sample was divided into two groups: Before-fortification (birth before June/2004) and After-fortification (last menstruation after June/2005). Hb curves were compared with national and international references. Polynomial regression models were built, with a significance level of 5%. Results: Although the higher levels of Hb in all gestational months after-fortification, the polynomial regression did not show the fortification effect (p=0.3). Curves in the two groups were above the references in the first trimester, with following decrease and stabilization at the end of pregnancy. Conclusion: Although the fortification effect was not confirmed, the study presents variation of Hb levels during pregnancy, which is important for assistencial practice and evaluation of public policies.
Resumo:
Members of the ENaC/degenerin family of ion channels include the epithelial sodium channel (ENaC), acid-sensing ion channels (ASICs) and the nematode Caenorhabditis elegans degenerins. These channels are activated by a variety of stimuli such as ligands (ASICs) and mechanical forces (degenerins), or otherwise are constitutively active (ENaC). Despite their functional heterogeneity, these channels might share common basic mechanisms for gating. Mutations of a conserved residue in the extracellular loop, namely the 'degenerin site' activate all members of the ENaC/degenerin family. Chemical modification of a cysteine introduced in the degenerin site of rat ENaC (betaS518C) by the sulfhydryl reagents MTSET or MTSEA, results in a approximately 3-fold increase in the open probability. This effect is due to an 8-fold shortening of channel closed times and an increase in the number of long openings. In contrast to the intracellular gating domain in the N-terminus which is critical for channel opening, the intact extracellular degenerin site is necessary for normal channel closing, as illustrated by our observation that modification of betaS518C destabilises the channel closed state. The modification by the sulfhydryl reagents is state- and size-dependent consistent with a conformational change of the degenerin site during channel opening and closing. We propose that the intracellular and extracellular modulatory sites act on a common channel gate and control the activity of ENaC at the cell surface.
Resumo:
PURPOSE: To analyze components of the deposits in the corneal flap interface of granular corneal dystrophy type II (GCD II) patients after laser in situ keratomileusis (LASIK). METHODS: Four corneal GCD II specimens displaying disease exacerbation after LASIK were analyzed. Three of these specimens included the recipient corneal button after penetrating keratoplasty or deep lamellar keratoplasty for advanced GCD II after LASIK. The fourth specimen, a similar case of GCD II after LASIK, included the amputated corneal flap. Specimens were processed for histopathologic and immunohistochemical analyses. RESULTS: Corneal stromal deposits in the LASIK flaps of all specimens were stained with 3 anti-transforming growth factor-beta-induced protein (TGFBIp) antibodies. The deposits displayed bright red color staining with Masson trichrome; however, negative staining was seen with Congo red, suggesting that hyaline is the main component localizing to the TGFBIp deposits rather than amyloid. CONCLUSIONS: Amorphous granular material deposited along the interface of the LASIK flap in GCD II corneas is composed mainly of hyaline deposits.
Resumo:
In proton magnetic resonance imaging (MRI) metallic substances lead to magnetic field distortions that often result in signal voids in the adjacent anatomic structures. Thus, metallic objects and superparamagnetic iron oxide (SPIO)-labeled cells appear as hypointense artifacts that obscure the underlying anatomy. The ability to illuminate these structures with positive contrast would enhance noninvasive MR tracking of cellular therapeutics. Therefore, an MRI methodology that selectively highlights areas of metallic objects has been developed. Inversion-recovery with ON-resonant water suppression (IRON) employs inversion of the magnetization in conjunction with a spectrally-selective on-resonant saturation prepulse. If imaging is performed after these prepulses, positive signal is obtained from off-resonant protons in close proximity to the metallic objects. The first successful use of IRON to produce positive contrast in areas of metallic spheres and SPIO-labeled stem cells in vitro and in vivo is presented.
Resumo:
The cortical collecting duct (CCD) plays a key role in regulated K(+) secretion, which is mediated mainly through renal outer medullary K(+) (ROMK) channels located in the apical membrane. However, the mechanisms of the regulation of urinary K(+) excretion with regard to K(+) balance are not well known. We took advantage of a recently established mouse CCD cell line (mCCD(cl1)) to investigate the regulation of K(+) secretion by mineralocorticoid and K(+) concentration. We show that this cell line expresses ROMK mRNA and a barium-sensitive K(+) conductance in its apical membrane. As this conductance is sensitive to tertiapin-Q, with an apparent affinity of 6 nM, and to intracellular acidification, it is probably mediated by ROMK. Overnight exposure to 100 nM aldosterone did not significantly change the K(+) conductance, while it increased the amiloride-sensitive Na(+) transport. Overnight exposure to a high K(+) (7 mM) concentration produced a small but significant increase in the apical membrane barium-sensitive K(+) conductance. The mRNA levels of all ROMK isoforms measured by qRT-PCR were not changed by altering the basolateral K(+) concentration but were decreased by 15-45% upon treatment with aldosterone (0.3 or 300 nM for 1 and 3 h). The paradoxical response of ROMK expression to aldosterone could possibly work as a preventative mechanism to avoid excessive K(+) loss which would otherwise result from the increased electrogenic Na(+) transport and associated depolarization of the apical membrane in the CCD. In conclusion, mCCD(cl1) cells demonstrate a significant K(+) secretion, probably mediated by ROMK, which is not stimulated by aldosterone but increased by overnight exposure to a high K(+) concentration.
Resumo:
One plausible mechanism through which financial market shocks may propagate across countriesis through the impact that past gains and losses may have on investors risk aversion and behavior. This paper presents a stylized model illustrating how heterogeneous changes in investors risk aversion affect portfolio allocation decisions and stock prices. Our empirical findings suggest that when funds returns are below average, they adjust their holdings toward the average (or benchmark) portfolio. In so doing, funds tend to sell the assets of countries in which they were overweight , increasing their exposure to countries in which they were underweight. Based on this insight, the paper constructs an index of financial interdependence which reflects the extent to which countries share overexposed funds. The index helps in explain the pattern of stock market comovement across countries. Moreover, a comparison of this interdependence measure to indices of trade or commercial bank linkages indicates that our index can improve predictions about which countries are more likely to be affected by contagion from crisis centers.