935 resultados para Cellulose decomposition
Resumo:
As galactomananas das infusões de café apresentam atividade imunoestimuladora in vitro, sendo esta atividade semelhante à das mananas acetiladas extraídas de Aloe vera. As galactomananas presentes no resíduo de café também possuem atividade imunoestimuladora in vitro quando são parcialmente acetiladas. Como as galactomananas são o componente maioritário do resíduo de café e como o café é um produto de largo consumo a nível mundial, o reaproveitamento deste resíduo como fonte de galactomananas com atividade imunoestimuladora deve ser considerado. Esta dissertação procura dar resposta a duas questões: 1. Quais são as estruturas das galactomananas responsáveis pela atividade imunoestimuladora destes polissacarídeos; e 2. Como é que as galactomananas podem ser extraídas quantitativamente do resíduo de café de modo a serem solúveis em água à temperatura ambiente e, assim, poderem ser utilizadas como ingredientes alimentares com atividade imunoestimuladora. A questão 1 foi respondida pela caracterização estrutural de quatro galactomananas, de três origens: a) as galactomananas das infusões de café e do resíduo que apresentaram atividade imunoestimuladora; b) a galactomanana da goma de alfarroba (LBG), que não apresentou atividade imunoestimuladora; e c) a manana acetilada de Aloe vera, que apresentou atividade imunoestimuladora. Estes polissacarídeos foram submetidos à análise de açúcares e de ligações glicosídicas e a hidrólise por endo-β-D- (1→4)-mananase. Os fragmentos de oligossacarídeos mais pequenos foram ainda analisados por espetrometria de massa por ionização de electrospray e espetrometria de massa tandem. As galactomananas das infusões de café, do resíduo de café e do Aloe vera apresentaram grau de ramificação e peso molecular semelhantes, enquanto as galactomananas da LBG apresentaram grau de ramificação e de polimerização maiores. Todas as galactomananas apresentaram resíduos de arabinose como ramificação. O grau de acetilação das galactomananas da LBG foi vestigial enquanto as galactomananas do Aloe vera apresentaram um grau de acetilação de 2,08; para as galactomananas do resíduo de café o grau de acetilação foi de 0,98 e para as infusões foi de 0,08. A localização dos grupos acetilo foi irregular em todos os polímeros. Os resultados obtidos permitem inferir que baixos níveis de ramificação, cadeias pequenas e alguma acetilação parecem promover a atividade imunoestimuladora atribuída às galactomananas. Para responder à questão 2, foi testada uma metodologia que envolveu a torra do resíduo de café a 160 ºC e a 220 ºC e a sua extração com água quente e com soluções de 4 M NaOH à temperatura de 20, 60 e 120 ºC. A torra do resíduo a 160 ºC e a extração sequencial permitiu extrair 56% das galactomananas presentes no resíduo de café e, simultaneamente, 54% das arabinogalactanas. As galactomananas mantiveram a sua estrutura caraterística de polissacarídeo acetilado composto por uma cadeira principal de resíduos de manose em ligação β-(1→4) e resíduos de Gal e Ara nas cadeias laterais. A 220 ºC, as galactomananas foram parcialmente degradadas e o rendimento de extração foi muito menor do que a 160 ºC. No entanto, mesmo a esta temperatura as galactomananas apresentaram resíduos acetilados e a presença de pentoses nas cadeias laterais, o que permite inferir a elevada resistência destes polissacarídeos à temperatura e aos reagentes alcalinos. De forma a melhor compreender a estabilidade térmica das galactomananas do resíduo de café e a influência que a presença de arabinogalactanas pode ter na sua estabilidade, foi feita uma análise termogravimétrica aos polissacarídeos extraídos do resíduo de café assim como a polissacarídeos relacionados estruturalmente com estes, como a celulose, a galactomanana de LBG e a goma arábica, uma arabinogalactana. As galactomananas são termicamente estáveis durante 3 h a 200 ºC, enquanto as arabinogalactanas são estáveis a 180 ºC. De acordo com os perfis dos termogramas obtidos, e pelo cálculo das energias de ativação da degradação térmica, o resíduo de café apresenta uma estabilidade térmica menor do que a galactomanana, possivelmente devido à presença de arabinogalactanas. Apesar de não se ter verificado alterações no termograma da galactomanana do café submetida a um tratamento térmico de 200 ºC durante 3 h, verificam-se alterações estruturais que envolvem a formação de novas ligações glicosídicas, nomeadamente, a formação de resíduos de manose ligados em O-2 e em O-6, reações de transglicosilação, despolimerização, formação de resíduos de anidro-hexoses no terminal redutor e isomerização manose-glucose. Estas alterações promovem a solubilização das galactomananas. Os resultados obtidos permitem propor que o resíduo de café possa ser submetido a uma torra seguida de extração com reagentes alcalinos a quente para obtenção das galactomananas com rendimentos elevados. Estes polissacarídeos podem tornar-se solúveis em água após tratamento térmico a 200 ºC, permitindo assim a sua utilização em formulações alimentares, nomeadamente, por preparação de compostos acetilados com baixos níveis de ramificação e cadeias pequenas de modo a promover a sua atividade imunoestimuladora.
Resumo:
This thesis reports in detail studies of industrial solid wastes valorization as alternative raw materials. All tested wastes are classified as non-hazardous and are generated in the pulp and paper process, including primary sludge, dregs, grits, lime mud and bottom ash (this generated in a process that occurs in parallel to the production of cellulose, whose aim is the production of energy to supply the plant through the combustion of forest biomass in fluidized bed). A detailed general characterization was performed at each waste and according to their characteristics, they were selected some applications in materials with potential use, specifically in Fibercement, Bituminous Mixture for regularization layer and industrial mortars (rendering mortars and cementitious-adhesive). After decided to application each waste was specifically tested to proceed the setting up of formulations containing different content of waste in replacement of the raw conventional material. As an isolated case, the bottom ash was tested not only as an alternative raw material for construction materials, but also it was tested for its use in fluidized bed in which the waste is generated as raw material. Both dregs and bottom ash had undergone special treatment to make possible to obtain a better quality of waste in order do not compromise the final product characteristics and process. The dregs were tested in bituminous mixtures as received and also washed (on the laboratory scale to remove soluble salts) and bottom ash were washed and screened in industrial scale (for removal of soluble salts, especially chlorides and coarse fraction particles elimination - particles larger than 1 mm size). The remaining residues form used in such as received avoiding additional costs. The results indicated potential and some limitations for each application to the use of these wastes as alternative raw material, but in some cases, the benefits in relation to valorization overlap with its limitations in both aspects, environmental and economic.
Resumo:
The interest in cellulose dissolution and regeneration is old but this topic has recently attracted strongly renewed attention. This is reflected in both applications- earlier and novel- and scientific controversies. This special issue attempts to connect a renewed fundamental understanding of molecular aspects with practical systems for dissolution and regeneration.
Resumo:
In the present study, a novel enzyme-based methodology for grafting Polyhydroxyalkanoates (PHAs) onto the ethyl cellulose (EC) as a backbone polymer was developed. Laccase assisted copolymerization was carried out under mild and eco-friendly reaction conditions. The resulting homogeneous composite membranes were characterized by Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Atomic Force Microscopy (AFM). The FTIR spectra of pure PHAs and PHAs containing graft composites (PHAs-g-EC) showed their strong characteristic bands at 1721 cm1, 1651 cm-1 and 1603 cm-1 respectively. Other accompanying bands in the range of 900-1300 cm-1 correspond to C=O vibration and C-O-C bond stretching, which could be contributed from PHAs and EC, respectively. The high intensity of the 3358 cm-1 band in the graft composite may have corresponded to the degradation of the carboxylic group from PHAs and also showed an increase of hydrogen-bonded groups at that distinct band region. The morphology was examined by SEM, which showed the well dispersed PHAs crystals in the backbone polymer of EC. XRD pattern for PHAs showed distinct peaks at 2-Theta values of 28o, 32o, 34o, 39o, 46o, 57o, 64o, 78o and 84o that represent the crystalline nature of PHAs. In comparison with those of neat PHAs, the degree of crystallinity for PHAs-g-EC decreased and this reduction is mainly because of the new cross-linking of PHAs within the EC backbone that changes the morphology and destroys the crystallites. Improved mechanical properties were observed for the PHAs-g-EC as compared to the individual components due to the impregnation of EC as reinforcement into the PHAs matrix. Improved mechanical strength enhanced thermal properties, along with low crystallinity of the present PHAs-g-EC suggesting its potential for various industrial and bio-medical applications.
Resumo:
This paper presents a new and efficient methodology for distribution network reconfiguration integrated with optimal power flow (OPF) based on a Benders decomposition approach. The objective minimizes power losses, balancing load among feeders and subject to constraints: capacity limit of branches, minimum and maximum power limits of substations or distributed generators, minimum deviation of bus voltages and radial optimal operation of networks. The Generalized Benders decomposition algorithm is applied to solve the problem. The formulation can be embedded under two stages; the first one is the Master problem and is formulated as a mixed integer non-linear programming problem. This stage determines the radial topology of the distribution network. The second stage is the Slave problem and is formulated as a non-linear programming problem. This stage is used to determine the feasibility of the Master problem solution by means of an OPF and provides information to formulate the linear Benders cuts that connect both problems. The model is programmed in GAMS. The effectiveness of the proposal is demonstrated through two examples extracted from the literature.
Resumo:
Mestrado em Engenharia Química - Ramo Optimização Energética na Indústria Química
Resumo:
Probing micro-/nano-sized surface conformations, which are ubiquitous in biological systems, by using liquid crystal droplets, which change their ordering and optical appearance in response to the presence of more than ten times smaller cellulose based micro/nano fibers, might find new uses in a range of biological environments and sensors. Previous studies indicate that electrospun micro/nano cellulosic fibers produced from liquid crystalline solutions could present a twisted form [1]. In this work, we study the structures of nematic liquid crystal droplets threaded by cellulose fibers prepared from liquid crystalline and isotropic solutions as well as droplets pierced by spider-made fibers [2]. Planar anchoring at the fibers and planar and homeotropic at the drop surfaces allowed probing cellulose fibers different helical structures as well as aligned filaments.
Resumo:
The purpose of this study was to determine the effect of increased soil moisture levels on
the decomposition processes in a peat-extracted bog. Field experiments, in which soil
moisture levels were manipulated, were conducted using 320 microcosms in the
Wainfleet Bog from May 2002 to November 2004. Decomposition was measured using
litter bags and monitoring the abundance of macro invertebrate decomposers known as
Collembola. Litter bags containing wooden toothpicks (n=2240), filter paper (n=480)
and Betula pendula leaves (n=40) were buried in the soil and removed at regular time
intervals up to one year. The results of the litter bag studies demonstrated a significant
reduction of the decomposition of toothpicks (p<0.001), filter paper (p<0.001), and
Betula pendula leaves (p
Resumo:
This project is focussed on the thermsLl decomposition of t-butyl hydroperoxide and sec-butyl hydroperoxide at 120°C to 160°C in three alcohol solvents. These are methanol, ethajiol and isopropyl alcohol. The aim of the project was to examine the process of induced decomposition. Thermal decomposition of t-hutyl hydroperoxide and sec-butyl hydroperoxide indicate that these reactions have first-order kinetics with activation energies on the order of 20 to 28 K cal/mole, Styrene was used as a free radical trap to inhibit the induced decomposition. The results permitted calculation of how much induced decomposition occurred in its absence. The experimental resvilts indicate that the induced decomposition is important for t-butyl hydroperoxide in alcohol solvents, as shown by both the reaction rate suid product studies. But sec-butyl hydroperoxide results show that the concerted mechanism for the interaction of two sec-butylperoxy radicals occurs in addition to the induced decomposition. Di-sodium E.D,T.A. was added to reduce possible effects of trace transition metal ion .impurities. The result of this experiment were not as expected. The rate of hydroperoxide decomposition was about the same but was zero-order in hydroperoxide concentration.
Resumo:
Kinetics and product studies of the decompositions of allyl-t-butyl peroxide and 3-hydroperoxy- l-propene (allyl hydroperoxide ) in tolune were investigated. Decompositions of allyl-t-butyl peroxide in toluene at 130-1600 followed first order kinetics with an activation energy of 32.8 K.cals/mol and a log A factor of 13.65. The rates of decomposition were lowered in presence of the radical trap~methyl styrene. By the radical trap method, the induced decomposition at 1300 is shown to be 12.5%. From the yield of 4-phenyl-l,2- epoxy butane the major path of induced decomposition is shown to be via an addition mechanism. On the other hand, di-t-butYl peroxyoxalate induced decomposition of this peroxide at 600 proceeded by an abstraction mechanism. Induced decomposition of peroxides and hydroperoxides containing the allyl system is proposed to occur mainly through an addition mechanism at these higher temperatures. Allyl hydroperoxide in toluene at 165-1850 decomposes following 3/2 order kinetics with an Ea of 30.2 K.cals per mole and log A of 10.6. Enormous production of radicals through chain branching may explain these relatively low values of E and log A. The complexity of the reaction is indicated a by the formation of various products of the decomposition. A study of the radical attack of the hydro peroxide at lower temperatures is suggested as a further work to throw more light on the nature of decomposition of this hydroperoxide.
Resumo:
Re~tes artd pJ~oducts of tllerma]. d,ecom.position of sec-butyl peroxide at 110 - 150°C i.n four solvents h,ave been determined. The d,ecompos i tion vJas sb.o\'\Tn to be tlnlmolecl.llar wi tho energies of activation in toluene, benzene, and cyclohexane of 36 .7-+ 1.0, 33.2 +- 1..0, 33.t~) +.. 1.0 I'(:cal/mol respectively. The activation energy of thermal decomposition for the d,et.1terated peroxide was found to be 37.2 4:- 1.0 KC8:1/1TIol in toluene. A.bo1J.t 70 - 80/~ ol~ tJJ.e' pl~od.1..1CtS could, be explained by kn01rJ11 reactions of free allcoxy raclicals J and very littJ...e, i.f allY, disPl"Opox~tiol'lation of tll10 sec-butoxy radica.ls in t116 solvent cage could be detected. The oth,er 20 - 30% of the peroxide yielded H2 and metb.:'ll etb..yl 1{etol1e. Tl1.e yield. o:f H2 "'lIas unafJ:'ected by the nature or the viscosity of the solvent, but H2 was not formed when s-t1U202 lrJaS phctolyzed. in tolttene at 35°C nor 'tl!Jrl.en the peroxide 1;'JaS tl1.ermally o..ecoJnposed. in the gas p11ase. ~pC-Dideutero-~-butYlperoxide was prepared and decomposed in toluene at 110 - 150°C. The yield of D2 was about ·•e1ne same 248 the yield. of I{2 from s-Bu202, bU.t th.e rate of decomposition (at 135°C) 1iJas only 1/1.55 as fast. Ivlecl1.anisms fOl') J:1ydrogen produ.ction are discussed, but none satisfactorily explains all the evidence.
Resumo:
Rates and products have been determined for the thermal decomposition of bis diphenyl methyl peroxide and diphenyl methyl tert* butyl peroxide at 110@~145@C* The decomposition was uniformly unimolecular with activation energies for the bis diphenyl methyl peroxide in tetrachloroethylene* toluene and nitrobenzene 26,6* 28*3f and 27 Kcals/mole respectively. Diphenyl methyl tert* butyl peroxide showed an activation energy of 38*6 Kcals/mole* About 80-90% of the products in the case of diphenyl methyl peroxide could be explained by the concerted process, this coupled with the negative entropies of activation obtained is a conclusive evidence for the reaction adopting a major concerted path* All the products in the case of diphenyl methyl peroxide could be explained by known reactions of alkoxy radicals* About 80-85% of tert butanol and benzophenone formed suggested far greater cage disproportionation than diffusing apart* Rates of bis triphenyl methyl peroxide have been determined in tetrachloroethylene at 100-120@C* The activation energy was found to be 31 Kcals/mole*
Resumo:
Decomposition and side reactions of, and the synthetic use of, pentafluorophenylmagnesium bromide and pentafluorophenyllithium have been investigated using G,C9/M.S, techniques• Their reactions with reagents such as CgF^X (X - H, F, CI, Br, 1), C6F4X2 (X - H, CI)f C6F3C13, C6H6. (CgX5)3P (X = H, F), (C6X5)3P=0 (X = H, F), (CgX5)Si (CH3)3 (X = H, F) and (CH0K SiCl , n = 1,2, in ether or ether/n-hexane were studied• In addition to the principal reaction of synthetic use, namely the replacement of a halogen by a pentafluorophenyl group, two types of side reactions were observed* These were (i) intermolecular loss of LiF via a nucleophilic substitution, and (ii) intramolecular loss of LiF, followed by the addition of either inorganic salts such as lithium or magnesium halides, or organometal compounds such as organolithium or organo-Grigaard* G.C«/M.S. techniques were routinely employed to study complicated reaction mixtures. Although mass spectrometry alone has disadvantages for the identification of isomers, deduction of the most probable pathway often helps overcome this problem.