957 resultados para Cellular Networks
Resumo:
In this paper, we investigate the effect of mobility constraints on epidemic broadcast mechanisms in DTNs (Delay-Tolerant Networks). Major factors affecting epidemic broadcast performances are its forwarding algorithm and node mobility. The impact of forwarding algorithm and node mobility on epidemic broadcast mechanisms has been actively studied in the literature, but those studies generally use unconstrained mobility models. The objective of this paper is therefore to quantitatively investigate the effect of mobility constraints on epidemic broadcast mechanisms. We evaluate the performances of three classes of epidemic broadcast mechanisms - P-BCAST (PUSH-based BroadCast), SA-BCAST (Self-Adaptive BroadCast), and HP-BCAST (History-based P-BCAST) - with a random waypoint mobility model with mobility constraints. Our finding includes that the existence of mobility constraints significantly improves the reach ability and dissemination speed of epidemic broadcast mechanisms while degrading their efficiency.
Resumo:
Epigenetic changes correspond to heritable modifications of the chromosome structure, which do not involve alteration of the DNA sequence but do affect gene expression. These mechanisms play an important role in normal cell differentiation, but aberration is associated also with several diseases, including cancer and neural disorders. In consequence, despite intensive studies in recent years, the contribution of modifications remains largely unquantified due to overall system complexity and insufficient data. Computational models can provide powerful auxiliary tools to experimentation, not least as scales from the sub-cellular through cell populations (or to networks of genes) can be spanned. In this paper, the challenges to development, of realistic cross-scale models, are discussed and illustrated with respect to current work.
Resumo:
Dried plant food materials are one of the major contributors to the global food industry. Widening the fundamental understanding on different mechanisms of food material alterations during drying assists the development of novel dried food products and processing techniques. In this regard, case hardening is an important phenomenon, commonly observed during the drying processes of plant food materials, which significantly influences the product quality and process performance. In this work, a recent meshfree-based numerical model of the authors is further improved and used to simulate the influence of case hardening on shrinkage characteristics of plant tissues during drying. In order to model fluid and wall mechanisms in each cell, Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) are used. The model is fundamentally more capable of simulating large deformation of multiphase materials, when compared with conventional grid-based modelling techniques such as Finite Element Methods (FEM) or Finite Difference Methods (FDM). Case hardening is implemented by maintaining distinct moisture levels in the different cell layers of a given tissue. In order to compare and investigate different factors influencing tissue deformations under case hardening, four different plant tissue varieties (apple, potato, carrot and grape) are studied. The simulation results indicate that the inner cells of any given tissue undergo limited shrinkage and cell wall wrinkling compared to the case hardened outer cell layers of the tissues. When comparing unique deformation characteristics of the different tissues, irrespective of the normalised moisture content, the cell size, cell fluid turgor pressure and cell wall characteristics influence the tissue response to case hardening.
Resumo:
This article presents and evaluates a model to automatically derive word association networks from text corpora. Two aspects were evaluated: To what degree can corpus-based word association networks (CANs) approximate human word association networks with respect to (1) their ability to quantitatively predict word associations and (2) their structural network characteristics. Word association networks are the basis of the human mental lexicon. However, extracting such networks from human subjects is laborious, time consuming and thus necessarily limited in relation to the breadth of human vocabulary. Automatic derivation of word associations from text corpora would address these limitations. In both evaluations corpus-based processing provided vector representations for words. These representations were then employed to derive CANs using two measures: (1) the well known cosine metric, which is a symmetric measure, and (2) a new asymmetric measure computed from orthogonal vector projections. For both evaluations, the full set of 4068 free association networks (FANs) from the University of South Florida word association norms were used as baseline human data. Two corpus based models were benchmarked for comparison: a latent topic model and latent semantic analysis (LSA). We observed that CANs constructed using the asymmetric measure were slightly less effective than the topic model in quantitatively predicting free associates, and slightly better than LSA. The structural networks analysis revealed that CANs do approximate the FANs to an encouraging degree.
Resumo:
Mismatches between services needing to interoperate have been addressed through the adaptation of structural and behavioural interfaces of services, which in practice incur long lead time through manual, coding effort. We propose a framework, complementary to con- ventional service adaptation, to synthesise service interfaces in the open setting of business networks, allowing consumers to introspect service interfaces and formulate service invocations. The framework also allows evolved service requests, as new features of service capabilities are discov- ered, through interactions with other, similar services. Finally the frame- work fosters reuse of adaptation efforts through normalisation of struc- tural and behavioural interfaces of similar services. This paper provides a first exposition of the service interface synthesis framework, describing patterns containing novel requirements for unilateral service adaptation and detailing the interface synthesis technique. Complex examples of ser- vices drawn from commercial logistic systems are then used to validate the synthesis technique and identify open challenges and future research directions.
Resumo:
We develop a hybrid cellular automata model to describe the effect of the immune system and chemokines on a growing tumor. The hybrid cellular automata model consists of partial differential equations to model chemokine concentrations, and discrete cellular automata to model cell–cell interactions and changes. The computational implementation overlays these two components on the same spatial region. We present representative simulations of the model and show that increasing the number of immature dendritic cells (DCs) in the domain causes a decrease in the number of tumor cells. This result strongly supports the hypothesis that DCs can be used as a cancer treatment. Furthermore, we also use the hybrid cellular automata model to investigate the growth of a tumor in a number of computational “cancer patients.” Using these virtual patients, the model can explain that increasing the number of DCs in the domain causes longer “survival.” Not surprisingly, the model also reflects the fact that the parameter related to tumor division rate plays an important role in tumor metastasis.
Resumo:
The use of expert knowledge to quantify a Bayesian Network (BN) is necessary when data is not available. This however raises questions regarding how opinions from multiple experts can be used in a BN. Linear pooling is a popular method for combining probability assessments from multiple experts. In particular, Prior Linear Pooling (PrLP), which pools opinions then places them into the BN is a common method. This paper firstly proposes an alternative pooling method, Posterior Linear Pooling (PoLP). This method constructs a BN for each expert, then pools the resulting probabilities at the nodes of interest. Secondly, it investigates the advantages and disadvantages of using these pooling methods to combine the opinions of multiple experts. Finally, the methods are applied to an existing BN, the Wayfinding Bayesian Network Model, to investigate the behaviour of different groups of people and how these different methods may be able to capture such differences. The paper focusses on 6 nodes Human Factors, Environmental Factors, Wayfinding, Communication, Visual Elements of Communication and Navigation Pathway, and three subgroups Gender (female, male),Travel Experience (experienced, inexperienced), and Travel Purpose (business, personal) and finds that different behaviors can indeed be captured by the different methods.
Resumo:
This project is a step forward in developing effective methods to mitigate voltage unbalance in urban residential networks. The method is proposed to reduce energy losses and improve quality of service in strongly unbalanced low-voltage networks. The method is based on phase swapping as well as optimal placement and sizing of Distribution Static Synchronous Compensator (D-STATCOM) using a Particle Swarm Optimisation method.
Resumo:
Cisplatin (cis-diamminedichloroplatinum (II)), is a platinum based chemotherapeutic employed in the clinic to treat patients with lung, ovarian, colorectal or head and neck cancers. Cisplatin acts to induce tumor cell death via multiple mechanisms. The best characterized mode of action is through irreversible DNA cross-links which activate DNA damage signals leading to cell death via the intrinsic mitochondrial apoptosis pathway. However, the primary issue with cisplatin is that while patients initially respond favorably, sustained cisplatin therapy often yields chemoresistance resulting in therapeutic failure. In this chapter, we review the DNA damage and repair pathways that contribute to cisplatin resistance. We also examine the cellular implications of cisplatin resistance that may lead to selection of subpopulations of cells within a tumor. In better understanding the mechanisms conferring cisplatin resistance, novel targets may be identified to restore drug sensitivity.
Bayesian networks as a complex system tool in the context of a major industry and university project
Resumo:
Calleija, a small to medium sized (SME) Australian and internationally recognised fine jeweller has secured a significant strategic global partnership with one of the world’s best-known luxury automobile brands, Aston Martin. Forging this international relationship to produce an elegant fine jewellery collection has given rise to a new network between the Australian jewellery industry and the European automobile industry. Calleija’s exclusive association with Aston Martin consolidates a shared passion for the finest quality and craftsmanship which was inspired by Aston Martin’s Supercar, the One-77. This inspiration lead to John Calleija being chosen by Aston Martin to design this latest high-luxury offering in which each design is limited to only 77 pieces utilising 30 unique designs (Calleija, 2012). The story behind Calleija’s internationalisation to the United Kingdom (UK) and their subsequent business-to-business strategic partnership with Aston Martin is no doubt a good sign for the Australian jewellery industry.
Resumo:
The major challenge of European Union’s agricultural industry is to ensure sustainable supply of quality food that meets the demands of a rapidly growing population, changing dietary patterns, increased competition for land use, and environmental concerns. Investments in research and innovation, which facilitate integration of external knowledge in food chain operations, are crucial to undertaking such challenges. This paper addresses how SMEs successfully innovate within collaborative networks with the assistance of innovation intermediaries. In particular, we explore the roles of innovation intermediaries in knowledge acquisition, knowledge assimilation, knowledge, transformation, and knowledge exploitation in open innovation initiatives from the wine industry through the theoretical lens of absorptive capacity. Based on two case studies from the wine industry, we identified seven key activities performed by innovation intermediaries that complement SMEs’ ability to successfully leverage external sources of knowledge for innovation purposes. These activities are articulation of knowledge needs and innovation capabilities, facilitation of social interactions, establishment of complementary links, implementation of governance structures, conflict management, enhancement of transparency, and mediation of communication. Our in-depth qualitative study of two innovation intermediaries in the wine industry has several important implications that contribute to research and practice.
Resumo:
The 'rich club' coefficient describes a phenomenon where a network's hubs (high-degree nodes) are on average more intensely interconnected than lower-degree nodes. Networks with rich clubs often have an efficient, higher-order organization, but we do not yet know how the rich club emerges in the living brain, or how it changes as our brain networks develop. Here we chart the developmental trajectory of the rich club in anatomical brain networks from 438 subjects aged 12-30. Cortical networks were constructed from 68×68 connectivity matrices of fiber density, using whole-brain tractography in 4-Tesla 105-gradient high angular resolution diffusion images (HARDI). The adult and younger cohorts had rich clubs that included different nodes; the rich club effect intensified with age. Rich-club organization is a sign of a network's efficiency and robustness. These concepts and findings may be advantageous for studying brain maturation and abnormal brain development.