954 resultados para Cell mediated immune responses
Resumo:
Periodontitis is an infectious disease, where putative periodontopathogens trigger chronic inflammatory and immune responses against periodontal structures, in which an unbalanced host response is also determinant to the disease outcome. It is reasonable to assume that patient susceptibility to periodontal tissue destruction could be determined by the balance between the response against periodontopathogens and regulatory mechanisms of these events mediated by suppressive T cells. In the present study, we identified and characterized natural regulatory T cells ( Tregs) in the inflammatory infiltrate of human chronic periodontitis ( CP) with emphasis on phenotypic analyses that were carried out to address the participation of Tregs in CP. Results showed that patients with CP presented increased frequency of T lymphocytes and CD4(+)CD25(+) T cells in the inflammatory infiltrate of gingival tissues. These cells exhibited the phenotypic markers of Tregs such as forkhead box p3 ( Foxp3), CTLA- 4, glucocorticoidinducible TNFR, CD103, and CD45RO and seemed to be attracted to the inflammation site by the chemokines CCL17 and CCL22, as their expression and its receptor CCR4 were increased in CP patients. Moreover, besides the increased detection of Foxp3 mRNA, diseased tissues presented high expression of the regulatory cytokines IL-10 and TGF-beta. In addition, the inflammatory infiltrate in CP biopsies was composed of CD25(+)Foxp3(+) and CD25(+)TGF-beta(+) cells, thus corroborating the hypothesis of the involvement of Tregs in the pathogenesis of CP. Finally, these results indicate that Tregs are found in the chronic lesions and must be involved in the modulation of local immune response in CP patients.
Resumo:
Trypanosoma cruzi infection causes intense myocarditis, leading to cardiomyopathy and severe cardiac dysfunction. Protective adaptive immunity depends on balanced signaling through a T cell receptor and coreceptors expressed on the T cell surface. Such coreceptors can trigger stimulatory or inhibitory signals after binding to their ligands in antigen-presenting cells (APC). T. cruzi modulates the expression of coreceptors in lymphocytes after infection. Deregulated inflammation may be due to unbalanced expression of these molecules. Programmed death cell receptor 1 (PD-1) is a negative T cell coreceptor that has been associated with T cell anergy or exhaustion and persistent intracellular infections. We aimed to study the role of PD-1 during T. cruzi-induced acute myocarditis in mice. Cytometry assays showed that PD-1 and its ligands are strongly upregulated in lymphocytes and APC in response to T. cruzi infection in vivo and in vitro. Lymphocytes infiltrating the myocardium exhibited high levels of expression of these molecules. An increased cardiac inflammatory response was found in mice treated with blocking antibodies against PD-1, PD-L1, and to a lesser extent, PD-L2, compared to that found in mice treated with rat IgG. Similar results in PD-1(-/-) mice were obtained. Moreover, the PD-1 blockade/deficiency led to reduced parasitemia and tissue parasitism but increased mortality. These results suggest the participation of a PD-1 signaling pathway in the control of acute myocarditis induced by T. cruzi and provide additional insight into the regulatory mechanisms in the pathogenesis of Chagas` disease.
Resumo:
Mice were vaccinated with recombinant Schistosoma japonicum cathepsin D aspartic protease, expressed in both insect cells and bacteria, in order to evaluate the vaccine efficacy of the schistosome protease. Mean total worm burdens were significantly reduced in vaccinated mice by 21-38%, and significant reductions in female worm burdens were also recorded (22-40%). Vaccination did not reduce fecundity; rather, we recorded increased egg output per female worm in vaccinated animals, suggesting a crowding effect. Vaccinated mice developed high levels of antibodies (predominantly IgG1, IgG2a and IgG2b isotypes), but there was no correlation between antibody levels and protective efficacy. Immune sera from vaccinated mice did not inhibit the in vitro degradation of human haemoglobin by the recombinant protease, and passive transfer of serum or antibodies from vaccinated animals, before and after parasite challenge, did not significantly reduce worm or egg burdens in recipient animals. These results suggest that antibodies may not play a key role in the protective effect elicited, and that protection may be due to a combination of humoral and cell-mediated responses.
Resumo:
Risk factors to prolonged fatigue syndromes (PFS) are controversial. Pre-morbid and/or current psychiatric disturbance, and/or disturbed cell-mediated immunity (CMI), have been proposed as etiologic factors. Self-report measures of fatigue and psychologic distress and three in vitro measures of CMI were collected from 124 twin pairs. Crosstwincrosstrait correlations were estimated for the complete monozygotic (MZ; 79 pairs) and dizygotic (DZ; 45 pairs) twin groups. Multivariate genetic and environmental models were fitted to explore the patterns of covariation between etiologic factors. For fatigue, the MZ correlation was more than double the DZ correlation (0.49 versus 0.16) indicating strong genetic control of familial aggregation. By contrast, for in vitro immune activation measures MZ and DZ correlations were similar (0.49–0.69 versus 0.42–0.53) indicating the etiologic role of shared environments. As small univariate associations were noted between prolonged fatigue and the in vitro immune measures (r = −0.07 to −0.12), multivariate models were fitted. Relevant etiologic factors included: a common genetic factor accounting for 48% of the variance in fatigue which also accounted for 4%, 6% and 8% reductions in immune activation; specific genetic factors for each of the in vitro immune measures; a shared environment factor influencing the three immune activation measures; and, most interestingly, unique environmental influences which increased fatigue but also increased markers of immune activation. PFS that are associated with in vitro measures of immune activation are most likely to be the consequence of current environmental rather than genetic factors. Such environmental factors could include physical agents such as infection and/or psychologic stress.
Resumo:
HLA-A*0201 transgenic, H-2D(b)/mouse beta2-microglobulin double-knockout mice were used to compare and optimize the immunogenic potential of 17HIV 1-derived, HLA-A0201-restricted epitopic peptides. A tyrosine substitution in position 1 of the epitopic peptides, which increases both their affinity for and their HLA-A0201 molecule stabilizing capacity, was introduced in a significant proportion, having verified that such modifications enhance their immunogenicity in respect of their natural antigenicity. Based on these results, a 13-polyepitope construct was inserted in the pre-S2 segment of the hepatitis B middle glycoprotein and used for DNA immunization. Long-lasting CTL responses against most of the inserted epitopes could be elicited simultaneously in a single animal with cross-recognition in several cases of their most common natural variants.
Resumo:
CD8 alpha beta cytotoxic T lymphocyte (CTL) polyepitope or polytope vaccines have traditionally been delivered using recombinant vector or DNA based delivery modalities. Here we show the delivery of polytope vaccines in the form of either synthetic polypeptides or recombinant polytope proteins by ImmunoStimulatory COMplexes (ISCOMs (R)). Induction of multiple protective CTL responses by these polytope-ISCOM formulations were comparable to viral vector or DNA based delivery modalities as assessed by IFN gamma ELISpot, chromium release and viral challenge assays. Measurement of CTL responses specific for the different epitopes revealed imunodominance patterns, which were largely independent of the vaccine vector or the order of the epitopes in the polytope. ISCOMs thus emerge as a viable human delivery modality for protein-based polytope vaccines. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Lichen planus is a disorder characterized by lesions of the skin and oral mucous membranes. Although many patients have involvement of both skin and oral mucosa at some stage during the progress of the disease, a larger group has oral involvement alone. It has been reported that oral lichen planus (OLP) affects one to two percent of the general population and has the potential for malignant transformation in some cases (1, 2). Like many chronic inflammatory skin diseases, it often persists for many years. Numerous disorders may be associated with OLP such as graft-vs.-host disease and Hepatitis C virus infection (3), however, it is unclear how such diverse influences elicit the disease and indeed whether they are identical to idiopathic OLP Available evidence supports the view that OLP is a cell-mediated immunological response to an induced antigenic change in the mucosa (4-6). Studies of the immunopathogenesis of OLP aim to provide specific novel treatments as well as contributing to our understanding of other cell-mediated inflammatory diseases. In this paper, the interactions between mast cells and T cells are explored from the standpoint of immune regulation. From these data, a unifying hypothesis for the immunopathogenesis of OLP is then developed and presented.
Resumo:
We have developed a highly sensitive cytolysis test, the fluorolysis assay, as a simple nonradioactive and inexpensive alternative to the standard Cr-51-release assay. P815 cells were stably transfected with a plasmid expressing the enhanced green fluorescent protein (EGFP) gene. These target cells were coated with or without cognate peptide or anti-CD3 Ab and then incubated with CD8(+) T cells to allow antigen-specific or nonspecific lysis. The degree of target cell lysis was measured using flow cytometry to count the percentage of viable propidium iodide(-) EGFP(+) cells, whose numbers were standardized to a reference number of fluorochrome-linked beads. By using small numbers of target cells (200-800 per reaction) and extended incubation times (up to 2 days), the antigen-specific cytolytic activity of one to two activated CD8(+) T cells of a CTL line could be detected. The redirected fluorolysis assay also measured the activity of very few ( greater than or equal to6) primary CD8(+) T cells following polyclonal activation. Importantly, antigen-specific lysis by small numbers ( greater than or equal to 25) of primary CD8(+) T cells could be directly measured ex vivo. This exquisite sensitivity of the fluorolysis assay, which was at least 8-33-folds higher than an optimized 51 Cr-release assay, allows in vitro and ex vivo studies of immune responses that would otherwise not be possible due to low CTL numbers or frequencies. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Serum taken from mice immune to malaria as a result of infection and drug cure, or from mice immunized with a recombinant form of the merozoite surface protein, MSP1, can provide passive protection of recipient mice against the lethal parasite, Plasmodium yoelii YM. However, recipients of MSP1-immune serum go on to develop long-term immunity, whereas recipients of serum from mice naturally immune to malaria rapidly lose their resistance to infection. We demonstrate that 'infection/cure' serum suppresses the development of both antibody and cell-mediated parasite-specific responses in recipients, whereas these develop in recipients of MSP1-specific antibodies. These data have profound implications for our understanding of the development of malaria immunity in babies who passively acquire antibodies from their mothers.
Resumo:
Priming to Ag can inhibit subsequent induction of an immune response to a new epitope incorporated into that Ag, a phenomenon referred to as original antigenic sin. In this study, we show that prior immunity to a virus capsid can inhibit subsequent induction of the IFN-gamma effector T cell response to a novel CD8-restricted antigenic epitope associated with the virus capsid. Inhibition does not involve Ab to the virus capsid, as it is observed in animals lacking B cells. CD8-restricted virus-specific T cell responses are not required, as printing to virus without CTL induction is associated with inhibition. However, IL-10(-/-) mice, in contrast to IL-10(+/+) mice, generate CD8 T cell and Ab responses to novel epitopes incorporated into a virus capsid, even when priming to the capsid has resulted in high titer Ab to the capsid. Furthermore, capsid-primed mice, unable to mount a response to a novel epitope in the capsid protein, are nevertheless able to respond to the same novel epitope delivered independently of the capsid. Thus, inhibition of responsiveness to a novel epitope in a virus-primed animal is a consequence of secretion of IL-10 in response to presented Ag, which inhibits local generation of new CD8 IFN-gamma-secreting effector T cells. Induction of virus- or tumor Ag-specific CD8 effector T cells in the partially Ag-primed host may thus be facilitated by local neutralization of IL-10.
Resumo:
It was reevaluated a reduced schedule for anti-rabies post-exposure immunization with newborn mice nervous tissue vaccine (Fuenzalida 8c Palacios) in a group of 30 non exposed volunteers. The vaccine was administered by intramuscular injections on days zero, 2, 4, 16 and 27, in the deltoid area. Antibody levels were determinated by a simplified serum neutralization microtest on days zero, 16 and 37. On days 16 and 37 the antibody levels of the whole group was >0.5 IU/ml and >1.0 IU/ml, respectively. The cell mediated immunity was precociously detected (on day 4) by the delayed type hipersensitivity skin test. Our results show that this reduced schedule elicited an early and effective humoral and cellular immune response. However it is necessary other studies with larger groups of vaccinees in order to obtain definitive conclusion.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry
Resumo:
Immunological tolerance, that is, the failure to mount an immune response to an otherwise immunogenic molecule, is one of the fundamental questions in immunology. The fact that lymphocytes express antigen receptors that are generated randomly and have the potential to recognize any conceivable antigen, adds another puzzle to the physiology of immunological tolerance. The other side of the coin, the general absence of immune responses to self antigens, is ensured by a tight regulation and several selection steps during T and B cell differentiation. One of these processes is the differentiation of regulatory T cells (Treg). While developing in the thymus, T cell clones bearing receptors with high affinity/avidity to antigens present at the time of differentiation may be eliminated by apoptosis or, alternatively, express Foxp3 and become Treg. Treg are key players in the regulation of immunological tolerance since humans and mice with complete loss of function variants of this gene develop fatal autoimmune conditions early in life.(...)
Resumo:
Humoral and cellular immune responses were evaluated in 44 C57BL/6 mice immunized with the Trypanosoma cruzi recombinant antigens CRA and FRA. Both antigens induced cutaneous immediate-type hypersensitivity response. The levels of IgG1, IgG2a, IgG2b and IgG3 were high in CRA immunized mice. IgG3 was the predominant isotype. Although no difference in antibody levels was observed in FRA-immunized mice when compared to control mice, both antigens were able to induce lymphoproliferation in immunized mice. Significant differences were observed between incorporation of [³H]- thymidine by spleen cell stimulated in vitro with CRA or FRA and the control group. These results suggest that CRA and FRA could be involved in mechanisms of resistance to Trypanosoma cruzi infection.
Resumo:
RESUMO: Os glicoconjugados que decoram a superfície celular e os lípidos e proteínas secretados ocupam o ponto de encontro onde normalmente ocorrem interacções críticas homólogas (hospedeiro-hospedeiro) e heterólogas (hospedeiro-patogénio). Apesar de ser largamente aceite que os glicanos são parte integrante do processo de imunidade, continua a não ser claro qual o papel que os glicanos, em toda a sua diversidade, tomam no quadro geral da imunidade. Os glicanos, que são frequentemente terminados por resíduos de ácido siálico, podem ser alterados por factores externos, tais como patogénios, ou por acontecimentos fisiológicos celulares específicos. Normalmente em posição terminal, as glico-estruturas que contêm ácido siálico assumem um papel fundamental numa quantidade substancial de receptores imunes envolvidos na adesividade e tráfico celular, tal como as Selectinas e as Siglecs, das quais se sabe apresentarem uma relevante função imune. À altura do início desta tese, era sabido que os ácidos siálicos expressos à superfície das células poderiam modular mecanismos importantes nas respostas imunes adaptativas. Considerando a posição de charneira que as células dendríticas (DCs) ocupam na transição da resposta imune inata para a adaptativa, antecipámos que os ácidos siálicos poderiam também modular mecanismos relevantes nas DCs humanas. As DCs têm uma função muito relevante na verificação e captura antigénica, migração para os gânglios linfáticos e apresentação antigénica aos linfócitos, uma sequência de funções que conduz, em ultima instância, à indução da resposta inata adaptativa. Considerando estas premissas, a nossa hipótese principal foi que os ácidos siálicos podem influenciar funções relevantes das DCs, tais como captura de antigénios, maturação, migração para os gânglios linfáticos e apresentação antigénica às células Para testar esta hipótese, dividimos o trabalho em quatro partes: 1) Analisámos os glicanos sialilados de superfície, expressos durante a diferenciação de monócitos humanos em DCs (moDCs). Os nossos dados mostraram que a expressão dos glicanos com ligações em O (O-glicanos) e sialilados em α2,3, assim como glicanos com ligações em N (N-glicanos) sialilados em α2,6 e α2,3 aumentou durante o processo de diferenciação das moDCs. Contribuindo para esta nova configuração glicosídica, três sialiltransferases (STs) poderão estar envolvidas: a ST6Gal-1 correlaciona-se com a expressão aumentada de N-glicanos sialilados em α2,6; a ST3Gal-1 contribui para a sialilação em α2,3 de O-glicanos, em especial de antigénios T; e a ST3Gal-4 poderá ser responsável pelo aumento de N-glicanos sialilados em α2,3. Após estímulo e consequente maturação das moDCs, ambos os níveis de expressão génica de ST6Gal-1 e ST3Gal-4 são negativamente modificados sendo, também, que a expressão de ST3Gal-1 varia consoante o estímulo. 2) Estudámos posteriormente as consequências da modulação dos ácidos siálicos de superfície nas funções das DCs. Observámos que a remoção dos ácidos siálicos de superfície diminui significativamente a capacidade de macropinocitose e endocitose mediada por receptores nas moDCs. Em contrapartida, o tratamento com sialidase aumentou significativamente a capacidade das moDCs para fagocitar Escherichia coli. Determinou-se também que este mecanismo requer a existência de ácido siálico presente nas E. coli indicando um mecanismo de interacção hospedeiro-patogénio dependente de ácido siálico em ambas as partes envolvidas. As moDCs tratadas com sialidase também apresentam um nível superior de expressão de moléculas de MHC e moléculas co-estimulatórias, sugerindo um fenótipo celular mais maduro. Recorrendo ao modelo de ratinho, utilizaram-se DCs derivadas de células da medula (BMDCs) de ratinhos deficientes em ST3Gal-1 e ST6Gal-1. Estes ensaios revelaram que quer a endocitose quer a maturação são influenciadas por modificações 37 nos glicanos sialilados em α2,3 ou α2,6. A detecção e quantificação de proteínas Nglicosiladas e sialiladas em α2,6 apontou para um potencial envolvimento de integrinas β2 nestes mecanismos. 3) O efeito da sialilação em α2,6 na migração das DCs para os gânglios linfáticos foi também analisado. Observámos que BMDCs deficientes para ST6Gal-1 apresentam uma redução de cerca de 50% nos níveis de migração das DCs para os gânglios linfáticos, tal como aferido em ensaios de inflamação in situ e estudos de transferência adoptiva de células. Uma redução dos níveis deste tipo de migração foi também observada quando BMDCs nativas foram transferidas para ratinhos receptores deficientes em ST6Gal-1. São, contudo, necessários mais ensaios de forma a identificar as moléculas envolvidas neste processo. 4) Por último, analisámos o impacto da sialilação na estimulação antigénica das DCs às células T. Assim, concluiu-se que moDCs tratadas com sialidase apresentam um nível de expressão superior de IL-12, TNF-ɑ, IL-6 e IL-10, e activação do factor de transcrição nuclear kappa B (NF-κB). As DCs tratadas com sialidase induziram uma maior proliferação nas células T, com expressão correspondente de interferão-γ. Este dado sugere que a remoção de ácidos siálicos de superfície contribui para o desenvolvimento de uma resposta pro-inflamatória do tipo 1 por células T auxiliares (resposta Th1). Considerando estes dados no seu todo, concluímos que o ácido siálico tem um papel marcante nas funções imunes das DCs. Alterações à concentração de ácido siálico à superfície das células podem alterar a endocitose/fagocitose, maturação, migração para os tecidos e gânglios linfáticos e capacidade estimulatória para com as células T. Complementando estes dados, as ligações glicosídicas de ácidos siálicos criados por ST6Gal-1 e ST3Gal-1 são funcionalmente relevantes. A modulação programada da sialilação do glicocálice, mediada por sialidases individuais ou sialiltransferases é uma possibilidade aceitável para a melhoria da fagocitose por DCs e da sua potência imunológica. Este facto tem um significado particular para imunoterapias baseadas em DCs, podendo provar-se decisivo para a sua eficiência e aplicabilidade num futuro muito próximo.-------------------------------ABSTRACT: Glycans decorating cell surface and secreted proteins and lipids occupy the junction where critical host–host and host-pathogen interactions occur. In spite of the wide acceptance that glycans are centrally implicated in immunity, exactly how glycans and their variety and variability contribute to the overall immune response remains poorly defined. Glycans, frequently terminated by sialic acid residues, may be modified by external factors such as pathogens or upon specific physiological cellular events. The terminal, privileged positions of sialic acid-modified structures makes them key, fundamental determinants for a number of immune receptors with known involvement in cellular adhesiveness and cell trafficking, such as Selectins and Siglecs, with known relevant immune functions. At the time this thesis was initiated, it was established that sialic acids expressed at cell surface could modulate important mechanisms of the adaptive immune responses. Given the key role of dendritic cells (DCs) in the transition from innate to the adaptive immune responses, we anticipated that sialic acids could also modulate important mechanisms of human DCs. DCs have a relevant role in antigen screening and uptake, migration to lymph nodes and antigen presentation to lymphocytes, ultimately triggering the adaptive immune response. Therefore, our primary hypothesis was that sialic acids may modulate DC functions, such as antigen uptake, maturation, homing to lymph nodes and antigen presentation to T cells. To test this hypothesis, we divided our work in four parts. 1) Surface sialylated glycans expressed during differentiation from human monocytes to DCs (moDCs) were analyzed. Our data showed that α2,3-sialylated O-glycans and α2,6- and α2,3-sialylated N-glycans expression increased during moDC differentiation. Three main sialyltransferases (STs) are committed with this new glycan configuration: ST6Gal- 1 correlates with the increased expression of α2,6-sialylated N-glycans; ST3Gal-1 32 contributes for the α2,3-sialylation of O-glycans, especially T antigens; and ST3Gal-4 may contribute for the increased α2,3-sialylated N-glycans. Upon moDC maturation, ST6Gal-1 and ST3Gal-4 are downregulated and ST3Gal-1 is altered in a stimulus dependent manner. 2) We subsequently analyzed the consequences of the modulation of cell surface sialic acids in DC functions. We observed that removing surface sialic acid by sialidase significantly decreased the capacity of moDCs to micropinocytose and receptormediated endocytose. In contrast, treatment with a sialidase significantly improved the capacity of moDCs to phagocytose Escherichia coli. The improved phagocytosis mechanism required E. coli sialic acids, indicating a mechanism of host–pathogen interaction dependent on sialic acid moieties. Sialidase-treated moDCs have increased expression of MHC and co-stimulatory molecules, suggesting a more mature phenotype. Experiments using mouse bone marrow-derived DCs (BMDCs) from ST3Gal-1-/- and ST6Gal-1-/- strains indicated that endocytosis and maturation are influenced by changes in either α2,3 or α2,6-sialylated glycans. The analysis of α2,6-sialylated, N-glycosylated proteins, strongly suggested the potential involvement of β2 integrins, underlying these mechanisms. 3) The effect of α2,6-sialylation in DC homing to lymph nodes was also analyzed. We observed that BMDCs deficient for ST6Gal-1 have an almost 50% reduction in DC homing, as assayed by in situ inflammation and adoptive transfer studies. A reduction in DC homing was also observed when wild type BMDCs were transferred into ST6Gal-1-/- recipient mice. Further investigations are necessary to identify the molecules involved in this process. 4) Finally, we also analyzed the impact of sialylation on DCs ability to prime T cells. Sialidase-treated moDCs show increased gene expression of IL-12, TNF-α, IL-6 and IL- 10 cytokines, and activation of the transcription factor nuclear factor-κB. Sialidase33 treated DCs induced a higher proliferative response of T cells with concomitant higher expression of interferon-γ, suggesting that the clearance of cell surface sialic acids contributes to the development of a T helper type 1 proinflammatory response. Together, our data strongly support sialic acid’s relevance in DC immune functions. Alterations of cell surface sialic acid content can alter the endocytosis/phagocytosis, maturation, migration/homing and the ability for T cell priming in human DCs. Moreover, sialic acid linkages created by ST6Gal-1 and ST3Gal-1 are functionally relevant. The engineering of cell surface sialylation, mediated by individual sialidases or sialyltransferases is a likely possibility to fine tune DC phagocytosis and immunological potency, with particular significance to DC-based therapies.