884 resultados para Carbon composites
Resumo:
This paper reports on the results of using unbleached sugar cane bagasse nanofibres (average diameter 26.5 nm; aspect ratio 247 assuming a dry fibre density of 1,500 kg/m3) to improve the physico-chemical properties of starch-based films. The addition of bagasse nanofibres (2.5 to 20 wt%) to modified potato starch (i.e. soluble starch) reduced the moisture uptake by up to 17 % at 58 % relative humidity. The film’s tensile strength and Young’s modulus increased by up to 100 % (3.1 to 6.2 MPa) and 300 % (66.3 to 198.3 MPa) respectively with 10 and 20 wt% fibre addition. However, the strain at yield dropped by 50 % for the film containing 10 wt% fibre. Models for composite materials were used to account for the strong interactions between the nanofibres and the starch matrix. The storage and loss moduli as well as the glass transition temperature (Tg) obtained from dynamic mechanical thermal analysis, were increased with the starch-nanofibre films indicating decreased starch chain mobility due to the interacting effect of the nanofibres. Evidence of the existence of strong interactions between the starch matrix and the nanofibres was revealed from detailed Fourier transform infra-red and scanning electron microscopic evaluation.
Resumo:
The ion PhCO2--CHPh, upon collision activation, undergoes competitive losses of CO and CO2 of which the former process produces the base peak of the spectrum. Product ion and substituent effect (Hammett) studies indicate that PhCO2--CHPh cyclises to a deprotonated hydroxydiphenyloxirane which ring opens to PhCOCH(O-)Ph. This anion then undergoes an anionic 1,2-Wittig type rearrangement {through [PhCO- (PhCHO)]} to form Ph2CHO- and CO. The mechanism of the 1,2-rearrangement has been probed by an ab initio study [at MP4(SDTQ)/6-31++G(d,p) level] of the model system HCOCH2O- →; MeO- + CO The analogous system RCO2--CHPh (R = alkyl) similarly loses CO, and the migratory aptitudes of the alkyl R groups in this reaction are Bu′ > Me > Et ∼Pri). This trend correlates with the order of anion basicities (i.e. the order of ΔG○acid values of RH), supporting the operation of an anion migration process. The loss of CO2 from PhCO2--CHPh yields Ph2CH- as the anionic product: several mechanistic scenarios are possible, one of which involves an initial ipso nucleophilic substitution.
Resumo:
The effects of crack depth (a/W) and specimen width W on the fracture toughness and ductile±brittle transition have been investigated using three-point bend specimens. Finite element analysis is employed to obtain the stress-strain fields ahead of the crack tip. The results show that both normalized crack depth (a/W) and specimen width (W) affect the fracture toughness and ductile±brittle fracture transition. The measured crack tip opening displacement decreases and ductile±brittle transition occurs with increasing crack depth (a/W) from 0.1 to 0.2 and 0.3. At a fixed a/W (0.2 or 0.3), all specimens fail by cleavage prior to ductile tearing when specimen width W increases from 25 to 40 and 50 mm. The lower bound fracture toughness is not sensitive to crack depth and specimen width. Finite element analysis shows that the opening stress in the remaining ligament is elevated with increasing crack depth or specimen width due to the increase of in-plane constraint. The average local cleavage stress is dependent on both crack depth and specimen width but its lower bound value is not sensitive to constraint level. No fixed distance can be found from the cleavage initiation site to the crack tip and this distance increases gradually with decreasing inplane constraint.
Resumo:
The unimolecular reactivities of a range of perbenzoate anions (X-C6H5CO3-), including the perbenzoate anion itself (X=H), nitroperbenzoates (X=para-, meta-, ortho-NO2), and methoxyperbenzoates (X=para-, meta-OCH3) were investigated in the gas phase by electrospray ionization tandem mass spectrometry. The collision-induced dissociation mass spectra of these compounds reveal product ions consistent with a major loss of carbon dioxide requiring unimolecular rearrangement of the perbenzoate anion prior to fragmentation. Isotopic labeling of the perbenzoate anion supports rearrangement via an initial nucleophilic aromatic substitution at the ortho carbon of the benzene ring, while data from substituted perbenzoates indicate that nucleophilic attack at the ipso carbon can be induced in the presence of electron-withdrawing moieties at the ortho and para positions. Electronic structure calculations carried out at the B3LYP/6311++G(d,p) level of theory reveal two competing reaction pathways for decarboxylation of perbenzoate anions via initial nucleophilic substitution at the ortho and ipso positions, respectively. Somewhat surprisingly, however, the computational data indicate that the reaction proceeds in both instances via epoxidation of the benzene ring with decarboxylation resulting-at least initially-in the formation of oxepin or benzene oxide anions rather than the energetically favored phenoxide anion. As such, this novel rearrangement of perbenzoate anions provides an intriguing new pathway for epoxidation of the usually inert benzene ring.
Resumo:
Ductile-brittle fracture transition was investigated using compact tension (CT) specimens from -70oC to 40oC for a carbon steel. Large deformation finite element analysis has been carried out to simulate the stable crack growth in the compact tension (CT, a/W=0.6), three point-point bend (SE(B), a/W=0.1) and centre-cracked tension (M(T), a/W=0.5) specimens. Experimental crack tip opening displacement (CTOD) resistance curve was employed as the crack growth criterion. Ductile tearing is sensitive to constraint and tearing modulus increases with reduced constraint level. The finite element analysis shows that path-dependence of J-integral occurs from the very beginning of crack growth and ductile crack growth elevates the opening stress on the remaining ligament. Cleavage may occur after some ductile crack growth due to the increase of opening stress. For both stationary and growing cracks, the magnitude of opening stress increases with increasing in-plane constraint. The ductile-brittle transition takes place when the opening stress ahead of the crack tip reaches the local cleavage stress as the in-plane constraint of the specimen increases.
Resumo:
Carbon nanoflakes (CNFLs) are synthesized on silicon substrates deposited with carbon islands in a methane environment using hot filament chemical vapor deposition. The structure and composition of the CNFLs are studied using field emission scanning electron microscopy, high-resolution transmission electron microscopy, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy. The results indicate that the CNFLs are composed of multilayer graphitic sheets and the area and thickness of CNFs increase with the growth time. The photoluminescence (PL) of CNFLs excited by a 325 nm He-Cd laser exhibits three strong bands centered at 408, 526, and 699 nm, which are related to the chemical radicals terminated on the CNFLs and the associated interband transitions. The PL results indicate that the CNFLs are promising as an advanced nano-carbon material capable of generating white light emission. These outcomes are significant to control the electronic structure of CNFLs and contribute to the development of next-generation solid-state white light emission devices. © 2014 the Partner Organisations.
Resumo:
A simple, fast, energy and labour efficient, carbon dot synthesis method involving only the mixing of a saccharide and base is presented. Uniform, green luminescent carbon dots with an average size of 3.5 nm were obtained, without the need for additional energy input or external heating. Detection of formation moment for fructose-NaOH-produced carbon dots is also presented.
Resumo:
Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties. © 2013 Macmillan Publishers Limited.
Resumo:
An atmospheric microplasma jet produces three-dimensional (3D) microfluidic channels on dense arrays of vertically aligned carbon nanotubes, which confines Au nanodot aqueous solution. The resulting hybrid 3D nanostructure is exploited as an effective microscopic area-selective sensing platform based on surface-enhanced Raman scattering.
Resumo:
Palladium is sputtered on multi-walled carbon nanotube forests to form carbon-metal core-shell nanowire arrays. These hybrid nanostructures exhibited resistive responses when exposed to hydrogen with an excellent baseline recovery at room temperature. The magnitude of the response is shown to be tuneable by an applied voltage. Unlike the charge-transfer mechanism commonly attributed to Pd nanoparticle-decorated carbon nanotubes, this demonstrates that the hydrogen response mechanism of the multi-walled carbon nanotube-Pd core-shell nanostructure is due to the increase in electron scattering induced by physisorption of hydrogen. These hybrid core-shell nanostructures are promising for gas detection in hydrogen storage applications.
Resumo:
Carbon nanowalls (CNWs) are self-assembled, free-standing, few-layered graphenenano-structures with large surface area, and thin graphene edges. For their application to nanobiotechnology, the effects of chemisorbed species on surface wettability were investigated. The surfaces of as-grown CNWs obtained using CH4/H2 mixture were hydrophilic. After Ar atmospheric pressure plasma treatments for up to 30 s, the contact angles of water droplets on the CNWs decreased from 51° to 5°, owing to a result of oxidation only at edges and surface defects. They increased up to 147° by CF4 plasma treatment at low pressure. The wide-range control of surface wettability of CNWs was realized by post-growth plasma treatments. We also demonstrated detection of bovine serum albumin using surface-modified CNWs as electrodes.
Resumo:
Carbon nanorods and graphene-like nanosheets are catalytically synthesized in a hot filament chemical vapor deposition system with and without plasma enhancement, with gold used as a catalyst. The morphological and structural properties of the carbon nanorods and nanosheets are investigated by field-emission scanning electron microscopy, transmission electron microscopy and micro-Raman spectroscopy. It is found that carbon nanorods are formed when a CH4 + H2 + N2 plasma is present while carbon nanosheets are formed in a methane environment without a plasma. The formation of carbon nanorods and carbon nanosheets are analyzed. The results suggest that the formation of carbon nanorods is primarily a precipitation process while the formation of carbon nanosheets is a complex process involving surface-catalysis, surface diffusion and precipitation influenced by the Gibbs–Thomson effect. The electron field emission properties of the carbon nanorods and graphene-like nanosheets are measured under high-vacuum; it is found that the carbon nanosheets have a lower field emission turn-on than the carbon nanorods. These results are important to improve the understanding of formation mechanisms of carbon nanomaterials and contribute to eventual applications of these structures in nanodevices.
Resumo:
A hybrid nano-urchin structure consisting of spherical onion-like carbon and MnO2 nanosheets is synthesized by a facile and environmentally-friendly hydrothermal method. Lithium-ion batteries incorporating the hybrid nano-urchin anode exhibit reversible lithium storage with superior specific capacity, enhanced rate capability, stable cycling performance, and nearly 100% Coulombic efficiency. These results demonstrate the effectiveness of designing hybrid nano-architectures with uniform and isotropic structure, high loading of electrochemically-active materials, and good conductivity for the dramatic improvement of lithium storage.
Resumo:
Plasma-based techniques offer many unique possibilities for the synthesis of various nanostructures both on the surface and in the plasma bulk. In contrast to the conventional chemical vapor deposition and some other techniques, plasma-based processes ensure high level of controllability, good quality of the produced nanomaterials, and reduced environmental risk. In this work, the authors briefly review the unique features of the plasma-enhanced chemical vapor deposition approaches, namely, the techniques based on inductively coupled, microwave, and arc discharges. Specifically, the authors consider the plasmas with the ion/electron density ranging from 10^10 to 10^14 cm−3, electron energy in the discharge up to ∼10 eV, and the operating pressure ranging from 1 to 10^4 Pa (up to 105 Pa for the atmospheric-pressure arc discharges). The operating frequencies of the discharges considered range from 460 kHz for the inductively coupled plasmas, and up to 2.45 GHz for the microwave plasmas. The features of the direct-current arc discharges are also examined. The authors also discuss the principles of operation of these systems, as well as the effects of the key plasma parameters on the conditions of nucleation and growth of the carbon nanostructures, mainly carbon nanotubes and graphene. Advantages and disadvantages of these plasma systems are considered. Future trends in the development of these plasma-based systems are also discussed.
Resumo:
The primary goal in hard tissue engineering is to combine high-performance scaffold materials with living cells to develop biologically active substitutes that can restore tissue functions. This requires relevant knowledge in multidisciplinary fields encompassing chemical engineering, material science, chemistry, biology and nanotechnology. Here we present an overview on the recent progress of how two representative carbon nanostructures, namely, carbon nanotubes and graphene, aid and advance the research in hard tissue engineering. The article focuses on the advantages and challenges of integrating these carbon nanostructures into functional scaffolds for repairing and regenerative purposes. It includes, but is not limited to, the critical physico-chemical properties of carbon nanomaterials for enhanced cell interactions such as adhesion, morphogenesis, proliferation and differentiation; the novel designs of two- and three-dimensional nanostructured scaffolds; multifunctional hybrid materials; and the biocompatible aspects of carbon nanotubes and graphene. Perspectives on the future research directions are also given, in an attempt to shed light on the innovative and rational design of more effective biomedical devices in hard tissue engineering.