957 resultados para Caloric restriction
Resumo:
As a result of testing for lipid and apolipoprotein(e) (apo E) phenotype status of an indigenous Australian community, an apo E variant associated with type III hyperlipoproteinaemia has been identified. Apo E phenotype was determined by analysis of VLDL by isoelectric focusing, and genotype on DNA amplified by polymerase chain reaction, using two different restriction enzyme isotyping assays. Phenotypes and genotypes were discordant in samples from two subjects and an abnormal-sized restriction fragment was also observed in their genotyping gel patterns. DNA sequencing studies revealed this was due to a single nucleotide deletion. 3817delC, at amino acid 136 on apo E. This resulted in a new reading frame and the premature termination of the apo E protein due to a stop codon (TGA) at nucleotide 4105. The variant apo E null allele showed a recessive mode of inheritance and, in combination with the E2 allele, resulted in the type III hyperlipoproteinaemic phenotype but when inherited with the E4 allele had no marked effect on plasma lipids.
Resumo:
Background Icodextrin is a high molecular weight, starch-derived glucose polymer, which is capable of inducing sustained ultrafiltration over prolonged (12–16 hour) peritoneal dialysis (PD) dwells. The aim of this study was to evaluate the ability of icodextrin to alleviate refractory, symptomatic fluid overload and prolong technique survival in PD patients. Methods A prospective, open-label, pre-test/post-test study was conducted in 17 PD patients (8 females/9 males, mean age 56.8 ± 2.9 years) who were on the verge of being transferred to haemodialysis because of symptomatic fluid retention that was refractory to fluid restriction, loop diuretic therapy, hypertonic glucose exchanges and dwell time optimisation. One icodextrin exchange (2.5 L 7.5%, 12-hour dwell) was substituted for a long-dwell glucose exchange each day. Results Icodextrin significantly increased peritoneal ultrafiltration (885 ± 210 ml to 1454 ± 215 ml, p < 0.05) and reduced mean arterial pressure (106 ± 4 to 96 ± 4 mmHg, p < 0.05), but did not affect weight, plasma albumin concentration, haemoglobin levels or dialysate:plasma creatinine ratio. Diabetic patients (n = 12) also experienced improved glycaemic control (haemoglobin Alc decreased from 8.9 ± 0.7% to 7.9 ± 0.7%, p < 0.05). Overall PD technique survival was prolonged by a mean of 11.6 months (95% CI 6.0–17.3 months). On multivariate Cox proportional hazards analysis, extension of technique survival by icodextrin was only significantly predicted by baseline net daily peritoneal ultrafiltration (adjusted HR 2.52, 95% CI 1.13–5.62, p < 0.05). Conclusions Icodextrin significantly improved peritoneal ultrafiltration and extended technique survival in PD patients with symptomatic fluid overload, especially those who had substantially impaired peritoneal ultrafiltration.
Resumo:
Objective To explore whether abnormalities in growth hormone binding protein (GHBP) may underlie the growth restriction associated with fetal aneuploidy. Design A retrospective casecontrol study. Setting Monash Medical Centre, Clayton, Victoria, Australia. Population Twenty-one trisomy 18, and 30 trisomy 21 pregnancies, and 170 chromosomally normal pregnancies at 15-18 weeks of gestation representing three to five controls per case matched for source, gestation and duration of storage. Methods GHBP was measured using a ligand immunofunctional assay. Results In the chromosomally normal pregnancies GHBP levels decreased slightly but significantly across the narrow gestational window studied. Compared with controls, levels of GHBP, expressed as median (95% CI) multiples of the median (MoM), in the trisomy 21 pregnancies were similar, 1.0 (0.92-1.39) MoM and 1.27 (1.04-1.50) MoM, respectively; P = 0.061 (Mann-Whitney CI test) but were significantly reduced in the trisomy 18 pregnancies, 0.68 (0.51-0.84) MoM; P = 0.0014 (Mann-Whitney U test). Conclusions These data suggest that decreased levels of maternal growth hormone binding protein, and by implication growth hormone receptor complement, may underlie the early severe growth restriction that is characteristic of trisomy 18.
Resumo:
The small envelope protein of hepatitis B virus (HBsAg-S) can self-assemble into highly organized virus like particles (VLPs) and induce an effective immune response. In this study, a restriction enzyme site was engineered into the cDNA of HBsAg-S at a position corresponding to the exposed site within the hydrophilic a determinant region (amino acid [aa] 127-128) to create a novel HBsAg vaccine vector allowing surface orientation of the inserted sequence. We inserted sequences of various lengths from hypervariable region 1 (HVR1) of the hepatitis C virus (HCV) E2 protein containing immunodominant epitopes and demonstrated secretion of the recombinant HBsAg VLPs from transfected mammalian cells. A number of different recombinant proteins were synthesized, and HBsAg VLPs containing inserts up to 36 aa were secreted with an efficiency similar to that of wild-type HBsAg. The HVR1 region exposed on the particles retained an antigenic structure similar to that recognized immunologically during natural infection. VLPs containing epitopes from either HCV-1a or -1b strains were produced that induced strain-specific antibody responses in immunized mice. Injection of a combination of these VLPs induced antibodies against both HVR1 epitopes that resulted in higher titers than were achieved by vaccination with the individual VLPs, suggesting a synergistic effect. This may lead to the development of recombinant particles which are able to induce a broad anti-HCV immune response against the HCV quasispecies or other quasispecies-like infectious agents.
Resumo:
We examined the genetic diversity of symbiotic dinoflagellates (Symbiodinium sp.) in the widespread hermatypic coral Plesiastrea versipora from tropical/subtropical (north-eastern Australia) and temperate waters (south-eastern Australia) using restriction fragment length polymorphisms of partial 18S ribosomal DNA (rDNA), together with sequence analysis of partial 28S rDNA. This study revealed that P. versipora associates with at least two distinct genotypes of symbiotic dinoflagellates and that the presence of these genotypes varies with latitude. P. versipora colonies from subtropical and tropical waters contained symbionts belonging to Symbiodinium clade C, while P. versipora colonies at high-latitude sites contained clade B. Variability within the two groups of symbionts (clades H and C) was minimal, suggesting possible host fidelity. The geographically distinct varieties of symbionts within the tissue of this hermatypic coral are likely to be associated with algal physiological differences, which in turn may relate to changing selective pressures as a function of latitude along the eastern Australian seaboard.
Resumo:
The scleractinian coral species, Seriatopora hystrix and Acropora longicyathus, are widely distributed throughout the latitudinal range of the tropical west Pacific. These 2 coral species live in a mutually beneficial relation with symbiotic dinoflagellates (zooxanthellae), which are passed to their progeny by vertical transmission (zooxanthellate eggs or larvae) and horizontal transmission (eggs or larvae that acquire symbionts from the environment), respectively. For S. hystrix, vertical transmission might create biogeographically isolated and genetically differentiated symbiont populations because the extent of its larval migration is known to be limited. On the other hand, horizontal transmission in corals such as A. longicyathus may result in genetically connected symbiont populations, especially if its zooxanthellae taxa are widely distributed. To examine these hypotheses, symbionts were collected from colonies of S. hystrix and A. longicyathus living in the Great Barrier Reef (Australia), South China Sea (Malaysia) and East China Sea (Ryukyus Archipelago, Japan), and were examined using restriction fragment length polymorphism and sequence analysis of large and small subunit rRNA genes. Phylogenetic analysis assigned the symbionts to 1 of 3 taxonomically distinct groups, known as clades. Symbionts from Australian and Japanese S. hystrix were placed in Clade C, and Malaysian S. hystrix symbionts in the newly described Clade D. Seven of 11 Australian and all Japanese and Malaysian colonies of A. longicyathus had symbiotic dinoflagellates that also grouped with Clade C, but symbionts from the remaining Australian colonies of A. longicyathus grouped with Clade A. Analysis of molecular variance of Clade C symbionts found significant genetic variation in 1 or more geographic groups (69.8%) and to a lesser extent among populations within geographic regions (13.6%). All populations of Clade C symbionts from S. hystrix were genetically differentiated according to geographic region. Although Clade C symbionts of A. longicyathus from Japan resolved into a distinct geographic group, those from Australia and Malaysia did not and were genetically connected. We propose that these patterns of genetic connectivity correlate with differences in the dispersal range of the coral or symbiont propagules and are associated with their respective modes of symbiont transmission.
Resumo:
In addressing the scientific study of consciousness, Crick and Koch state, "It is probable that at any moment some active neuronal processes in your head correlate with consciousness, while others do not: what is the difference between them?" (1998, p. 97). Evidence from electrophysiological and brain-imaging studies of binocular rivalry supports the premise of this statement and answers to some extent, the question posed. I discuss these recent developments and outline the rationale and experimental evidence for the interhemispheric switch hypothesis of perceptual rivalry. According to this model, the perceptual alternations of rivalry reflect hemispheric alternations, suggesting that visual consciousness of rivalling stimuli may be unihemispheric at any one time (Miller et al., 2000). However, in this paper, I suggest that interhemispheric switching could involve alternating unihemispheric attentional selection of neuronal processes for access to visual consciousness. On this view, visual consciousness during rivalry could be bihemispheric because the processes constitutive of attentional selection may be distinct from those constitutive of visual consciousness. This is a special case of the important distinction between the neuronal correlates and constitution of visual consciousness.
Resumo:
The study aimed to identify significant antenatal risk factors for cerebral palsy (CP) among extremely preterm infants with a matched case-control design. Infants born between 1989 and 1996 at 24 to 27 weeks' gestation who survived to hospital discharge were evaluated: 30 with a proven diagnosis of CP at 2 years corrected for prematurity and 120 control children matched for gestational age without CP. Information on maternal obstetric risk factors and medication was obtained. Matched analyses were performed and odds ratios (OR) and 95% confidence intervals (CI) were calculated. An antenatal diagnosis of intrauterine growth restriction was associated with an increased risk of CP (OR 6.6; 95% CI 1.8 to 25.2), while maternal administration of corticosteroids was associated with a reduced risk of CP (OR 0.4; 95% CI 0.1 to 0.98). A high rate of placental histopathology was achieved but no relation between clinical or histological chorioamnionitis or funisitis and CP was demonstrated. Maternal preeclampsia was not associated with a statistically significant reduction in the risk of CP. It is concluded that a reduced risk of CP in extremely preterm infants is associated with the antenatal use of corticosteroids.
Resumo:
Forty-five Large White gilts were used to study the effect of energy intake from 28 to 176 d of age on body composition and reproductive development. From 28 to 60 d, the gilts were fed ad libitum a 16.6 MJ DE/kg, 24% crude protein and 1.3% total lysine diet. From 61 d of age three dietary treatments were used; 1) ad libitum access to feed (15.6 MJ DE/kg, 21% crude protein and 1.07% total lysine) (H), 2) feed offered at 75% (M) of the previous days intake of H, and 3) feed offered at 60% (L) of the previous days intake of H. ADG from 61 to 176 d of age was (p <0.05) affected by treatment. Although live weight at 176 d of age did not differ (p >0.1) the H gilts had higher (p <0.08) carcass weights than the M or L gilts. Back fat depths were similar (p >0.1) for all treatments at 115 d of age, however by 176 d of age M and H gilts were fatter (p <0.1) than L gilts. The mean lipid deposition (LD) from 115 to 176 d of age for L gilts (78.9 g/d) was less (p <0.05) than for M gilts (143.6 g/d) and H gilts (135.6 g/d). There were no differences between treatments for protein deposition (PD) over the same period. More (p <0.05) H gilts (n=8) attained puberty (first observed estrus) than either M gilts or L gilts (n=4 for both). Follicle numbers were similar (p >0.1) across treatments. For gilts that attained puberty, H gilts had fewer (p <0.05) follicles (13.5) than M gilts (19.7) and L gilts (21.3). For gilts with follicular development, H gilts had the heaviest (458.7 g) reproductive tract weight (RTW). However, for those that attained puberty, L gilts had the heaviest RTW. RTW were lowest for those with no follicular development. Energy restriction had a negative impact on puberty attainment, i.e. it took longer to reach puberty. However, for gilts that attained puberty, the number of follicles was greater for those on lower feed intakes. It would appear that rate of fat deposition, but not necessarily the total amount of fat, plays an important role in puberty attainment.
Resumo:
Saccharomyces cerevisiae protoplasts exposed to bovine papillomavirus type 1 (BPV-1) virions demonstrated uptake of virions on electron microscopy. S. cerevisiae cells looked larger after exposure to BPV-1 virions, and cell wall regeneration was delayed. Southern blot hybridization of Hirt DNA from cells exposed to BPV-1 virions demonstrated BPV-1 DNA, which could be detected over 80 days of culture and at least 13 rounds of division. Two-dimensional gel analysis of Hirt DNA showed replicative intermediates, confirming that the BPV-1 genome was replicating within S. cerevisiae. Nicked circle, linear, and supercoiled BPV-1 DNA species were observed in Hirt DNA preparations from S. cerevisiae cells infected for over 50 days, and restriction digestion showed fragments hybridizing to BPV-1 in accord with the predicted restriction map for circular BPV-1 episomes. These data suggest that BPV-1 can infect S. cerevisiae and that BPV-1 episomes can replicate in the infected S. cerevisiae cells.
Resumo:
Laboratory-scale sequencing batch reactors (SBRs) as models for wastewater treatment processes were used to identify glycogen-accumulating organisms (GAOs), which are thought to be responsible for the deterioration of enhanced biological phosphorus removal (EBPR). The SBRs (called Q and T), operated under alternating anaerobic-aerobic conditions typical for EBPR, generated mixed microbial communities (sludges) demonstrating the GAO phenotype. Intracellular glycogen and poly-beta-hydroxyalkanoate (PHA) transformations typical of efficient EBPR occurred but polyphosphate was not bioaccumulated and the sludges contained 1.8% P (sludge Q) and 1.5% P (sludge T). 16S rDNA clone libraries were prepared from DNA extracted from the Q and T sludges. Clone inserts were grouped into operational taxonomic units (OTUs) by restriction fragment length polymorphism banding profiles. OTU representatives were sequenced and phylogenetically analysed. The Q sludge library comprised four OTUs and all six determined sequences were 99.7% identical, forming a cluster in the gamma-Proteobacteria radiation. The T sludge library comprised eight OTUs and the majority of clones were Acidobacteria subphylum 4 (49% of the library) and candidate phylum OPU (39% of the library). One OTU (two clones, of which one was sequenced) was in the gamma-Proteobacteria radiation with 95% sequence identity to the Q sludge clones. Oligonucleotide probes (called GAOQ431 and GAOQ989) were designed from the gamma-Proteobacteria clone sequences for use in fluorescence in situ hybridization (FISH); 92 % of the Q sludge bacteria and 28 % of the T sludge bacteria bound these probes in FISH. FISH and post-FISH chemical staining for PHA were used to determine that bacteria from a novel gamma-Proteobacteria cluster were phenotypically GAOs in one laboratory-scale SBR and two fullscale wastewater treatment plants. It is suggested that the GAOs from the novel cluster in the gamma-Proteobacteria radiation be named 'Candidatus Competibacter phosphatis'.
Resumo:
Inherited susceptibility to breast cancer results from germline mutations in one of a number of genes including BRCA1. A significant number of BRCA1-linked familial breast cancer patients, however, have no detectable BRCA1 mutation. This could be due in part to the inability of commonly used mutation-detection techniques to identify mutations outside the BRCA1 coding region. This paper addresses the hypothesis that non coding region mutations, specifically in the BRCA1 promoter, account for some of these cases. We describe a new and detailed restriction map of the 5' region of the BRCA1 gene including the nearby NBR2, psiBRCA1, and NBR1 genes and the isolation of a number of new informative hybridization probes suitable for Southern analysis. Using this information we screened DNA from lymphoblastoid cell-lines made from 114 UK familial breast cancer patients and detected one large deletion in the 5' region of BRCA1. We show that the breakpoints for this deletion are in BRCA1 intron 2 and between NBR2 and exon 2 of psiBRCA1, raising the possibility that this deletion arose via a novel mechanism involving BRCA1:psiBRCA1 recombination. We have also screened 60 familial breast cancer patients from the Australian population, using an amplification refractory mutation system (ARMS) technique described previously by our group, and found one patient with a genotype consistent with a BRCA1 promoter deletion. These findings indicate that germline BRCA1 promoter deletions are a rare and yet significant mutation event and that they could arise via a novel genetic mechanism. Hum Mutat 19:435-442, 2002. (C) 2002 Wiley-Liss, Inc.
Resumo:
Rapid accumulation of few polyhedra (FP) mutants was detected during serial passaging of Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) in cell culture. 100% FP infected cells were observed by passage 6. The specific yield decreased from 178 polyhedra per cell at passage 2 to two polyhedra per cell at passage 6. The polyhedra at passage 6 were not biologically active, with a 28-fold reduction in potency compared to passage 3. Electron microscopy studies revealed that very few polyhedra were produced in an FP infected cell (< 10 polyhedra per section) and in most cases these polyhedra contained no virions. A specific failure in the intranuclear nucleocapsid envelopment process in the FP infected cells, leading to the accumulation of naked nucleocapsids, was observed. Genomic restriction endonuclease digestion profiles of budded virus DNA from all passages did not indicate any large DNA insertions or deletions that are often associated with such FP phenotypes for the extensively studied Autographa californica nucleopolyhedrovirus and Gaileria mellonella nucleopolyhedrovirus. Within an HaSNPV 25K FP gene homologue, a single base-pair insertion (an adenine residue) within a region of repetitive sequences (seven adenine residues) was identified in one plaque-purified HaSNPV FP mutant. Furthermore, the sequences obtained from individual clones of the 25KFP gene PCR products of a late passage revealed point mutations or single base-pair insertions occurring throughout the gene. The mechanism of FP mutation in HaSNPV is likely similar to that seen for Lymantria dispar nucleopolyhedrovirus, involving point mutations or small insertions/deletions of the 25K FP gene.
Resumo:
Although largely solitary, humpback whales exhibit a number of behaviours where individuals co-operate with one another, for example during bubble net feeding. Such cases could be due to reciprocal altruism brought on by exceptional circumstances, for example the presence of abundant shoaling fish. An alternative explanation is that these behaviours have evolved through kin selection. With little restriction to either communication or movement, diffuse groups of relatives could maintain some form of social organization without the need to travel in tight-nit units. To try to distinguish between these hypotheses, we took advantage of the fact that migrating humpback whales often swim together in small groups. If kin selection is important in humpback whale biology, these groups should be enriched for relatives. Consequently, we analysed biopsy samples from 57 groups of humpback whales migrating off Eastern Australia in 1992. A total of 142 whales were screened for eight microsatellite markers. Mitochondrial DNA sequences (371 bp) were also used to verify and assist kinship identification. Our data add support to the notion that mothers travel with their offspring for the first year of the calf's life. However, beyond the presence of mother-calf/yearling pairs, no obvious relatedness pattern was found among whales sampled either in the same pod or on the same day. Levels of relatedness did not vary between migratory phases (towards or away from the breeding ground), nor between the two sexes considered either overall or in the north or south migrations separately. These findings suggest that, if any social organization does exist, it is formed transiently when needed rather than being a constant feature of the population, and hence is more likely based on reciprocal altruism than kin selection.
Resumo:
Stochastic differential equations (SDEs) arise from physical systems where the parameters describing the system can only be estimated or are subject to noise. Much work has been done recently on developing higher order Runge-Kutta methods for solving SDEs numerically. Fixed stepsize implementations of numerical methods have limitations when, for example, the SDE being solved is stiff as this forces the stepsize to be very small. This paper presents a completely general variable stepsize implementation of an embedded Runge Kutta pair for solving SDEs numerically; in this implementation, there is no restriction on the value used for the stepsize, and it is demonstrated that the integration remains on the correct Brownian path.