941 resultados para CONVENCIÓN DE VIENA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amundsenisen is an ice field, 80 km2 in area, located in Southern Spitsbergen, Svalbard. Radio-echo sounding measurements at 20 MHz show high intensity returns from a nearly flat basal reflector at four zones, all of them with ice thickness larger than 500m. These reflections suggest possible subglacial lakes. To determine whether basal liquid water is compatible with current pressure and temperature conditions, we aim at applying a thermo mechanical model with a free boundary at the bed defined as solution of a Stefan problem for the interface ice-subglaciallake. The complexity of the problem suggests the use of a bi-dimensional model, but this requires that well-defined flowlines across the zones with suspected subglacial lakes are available. We define these flow lines from the solution of a three-dimensional dynamical model, and this is the main goal of the present contribution. We apply a three-dimensional full-Stokes model of glacier dynamics to Amundsenisen icefield. We are mostly interested in the plateau zone of the icefield, so we introduce artificial vertical boundaries at the heads of the main outlet glaciers draining Amundsenisen. At these boundaries we set velocity boundary conditions. Velocities near the centres of the heads of the outlets are known from experimental measurements. The velocities at depth are calculated according to a SIA velocity-depth profile, and those at the rest of the transverse section are computed following Nye’s (1952) model. We select as southeastern boundary of the model domain an ice divide, where we set boundary conditions of zero horizontal velocities and zero vertical shear stresses. The upper boundary is a traction-free boundary. For the basal boundary conditions, on the zones of suspected subglacial lakes we set free-slip boundary conditions, while for the rest of the basal boundary we use a friction law linking the sliding velocity to the basal shear stress,in such a way that, contrary to the shallow ice approximation, the basal shear stress is not equal to the basal driving stress but rather part of the solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although there are numerous accurate measuring methods to determine soil moisture content in a spot, until very recently there were no precise in situ and in real time methods that were able to measure soil moisture content along a line. By means of the Distributed Fiber Optic Temperature Measurement method or DFOT, the temperature in 0.12 m intervals and long distances (up to 10,000 m) with a high time frequency and an accuracy of +0.2º C is determined. The principle of temperature measurement along a fiber optic cable is based on the thermal sensitivity of the relative intensities of backscattered photons that arise from collisions with electrons in the core of the glass fiber. A laser pulse, generated by the DTS unit, traversing a fiber optic cable will result in backscatter at two frequencies. The DTS quantifies the intensity of these backscattered photons and elapsed time between the pulse and the observed returned light. The intensity of one of the frequencies is strongly dependent on the temperature at the point where the scattering process occurred. The computed temperature is attributed to the position along the cable from which the light was reflected, computed from the time of travel for the light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

production, during the summer of 2010. This farm is integrated at the Spanish research network for the sugar beet development (AIMCRA) which regarding irrigation, focuses on maximizing water saving and cost reduction. According to AIMCRA 0 s perspective for promoting irrigation best practices, it is essential to understand soil response to irrigation i.e. maximum irrigation length for each soil infiltration capacity. The Use of Humidity Sensors provides foundations to address soil 0 s behavior at the irrigation events and, therefore, to establish the boundaries regarding irrigation length and irrigation interval. In order to understand to what extent farmer 0 s performance at Tordesillas farm could have been potentially improved, this study aims to address suitable irrigation length and intervals for the given soil properties and evapotranspiration rates. In this sense, several humidity sensors were installed: (1) A Frequency Domain Reflectometry (FDR) EnviroScan Probe taking readings at 10, 20, 40 and 60cm depth and (2) different Time Domain Reflectometry (TDR) Echo 2 and Cr200 probes buried in a 50cm x 30cm x 50cm pit and placed along the walls at 10, 20, 30 and 40 cm depth. Moreover, in order to define soil properties, a textural analysis at the Tordesillas Farm was conducted. Also, data from the Tordesillas meteorological station was utilized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolution of water content on a sandy soil during the sprinkler irrigation campaign, in the summer of 2010, of a field of sugar beet crop located at Valladolid (Spain) is assessed by a capacitive FDR (Frequency Domain Reflectometry) EnviroScan. This field is one of the experimental sites of the Spanish research center for the sugar beet development (AIMCRA). The objective of the work focus on monitoring the soil water content evolution of consecutive irrigations during the second two weeks of July (from the 12th to the 28th). These measurements will be used to simulate water movement by means of Hydrus-2D. The water probe logged water content readings (m3/m3) at 10, 20, 40 and 60 cm depth every 30 minutes. The probe was placed between two rows in one of the typical 12 x 15 m sprinkler irrigation framework. Furthermore, a texture analysis at the soil profile was also conducted. The irrigation frequency in this farm was set by the own personal farmer 0 s criteria that aiming to minimizing electricity pumping costs, used to irrigate at night and during the weekend i.e. longer irrigation frequency than expected. However, the high evapotranspiration rates and the weekly sugar beet water consumption—up to 50mm/week—clearly determined the need for lower this frequency. Moreover, farmer used to irrigate for six or five hours whilst results from the EnviroScan probe showed the soil profile reaching saturation point after the first three hours. It must be noted that AIMCRA provides to his members with a SMS service regarding weekly sugar beet water requirement; from the use of different meteorological stations and evapotranspiration pans, farmers have an idea of the weekly irrigation needs. Nevertheless, it is the farmer 0 s decision to decide how to irrigate. Thus, in order to minimize water stress and pumping costs, a suitable irrigation time and irrigation frequency was modeled with Hydrus-2D. Results for the period above mentioned showed values of water content ranging from 35 and 30 (m3/m3) for the first 10 and 20cm profile depth (two hours after irrigation) to the minimum 14 and 13 (m3/m3) ( two hours before irrigation). For the 40 and 60 cm profile depth, water content moves steadily across the dates: The greater the root activity the greater the water content variation. According to the results in the EnviroScan probe and the modeling in Hydrus-2D, shorter frequencies and irrigation times are suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal tracking has been addressed by different initiatives over the last two decades. Most of them rely on satellite connectivity on every single node and lack of energy-saving strategies. This paper presents several new contributions on the tracking of dynamic heterogeneous asynchronous networks (primary nodes with GPS and secondary nodes with a kinetic generator) motivated by the animal tracking paradigm with random transmissions. A simple approach based on connectivity and coverage intersection is compared with more sophisticated algorithms based on ad-hoc implementations of distributed Kalman-based filters that integrate measurement information using Consensus principles in order to provide enhanced accuracy. Several simulations varying the coverage range, the random behavior of the kinetic generator (modeled as a Poisson Process) and the periodic activation of GPS are included. In addition, this study is enhanced with HW developments and implementations on commercial off-the-shelf equipment which show the feasibility for performing these proposals on real hardware.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a System Safety application to reduce the economical impact hazards in growings produced by Rainfall. System Safety is an engineering subdiscipline oriented to identify and mitigate the possible hazards to a system under study. Inside the System Safety area, the FMECA (Failure Mode, Effects and Criticallity Analysis) is a popular tool to analyze and identify the failures and weaknesses points of any system. Basically, it consist on identifying systematically the failure modes of a system to mitigate them as much as possible. The idea is to study three different kind of growings (stone fruits in the south of Spain, wheat production in Castilla Leon and Olive trees production in Andalucia) using this methodology in order to identify all the hazardous situations produced by rainfall. Applying the state of the art weather forecast techniques, this information would help farmers to prevent and mitigate the identified hazardous situations. The aim of the work is to prevent the economical hazards as are defined in the System Safety area: "Any real or potential condition that can cause injury, illness, or death to personnel; damage to or loss of a system, equipment or property; or damage to the environment", so the study is not reduced to the analysis of catastrophical situations but aboutany kind of economical damage produced by rainfall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The province of Salta is located the Northwest of Argentina in the border with Bolivia, Chile and Paraguay. Its Capital is the city of Salta that concentrates half of the inhabitants of the province and has grown to 600000 hab., from a small active Spanish town well founded in 1583. The city is crossed by the Arenales River descending from close mountains at North, source of water and end of sewers. But with actual growing it has become a focus of infection and of remarkable unhealthiness. It is necessary to undertake a plan for the recovery of the river, directed to the attainment of the well-being and to improve the life?s quality of the Community. The fundamental idea of the plan is to obtain an ordering of the river basin and an integral management of the channel and its surroundings, including the cleaning out. The improvement of the water?s quality, the healthiness of the surroundings and the improvement of the environment, must go hand by hand with the development of sport activities, of relaxation, tourism, establishment of breeding grounds, kitchen gardens, micro enterprises with clean production and other actions that contribute to their benefit by the society, that being a basic factor for their care and sustainable use. The present pollution is organic, chemical, industrial, domestic, due to the disposition of sweepings and sewer effluents that affects not only the flora and small fauna, destroying the biodiversity, but also to the health of people living in their margins. Within the plan it will be necessary to consider, besides hydric and environmental cleaning and the prevention of floods, the planning of the extraction of aggregates, the infrastructure and consolidation of margins works and the arrangement of all the river basin. It will be necessary to consider the public intervention at state, provincial and local level, and the private intervention. In the model it has been necessary to include the sub-model corresponding to the election of the entity to be the optimal instrument to reach the proposed objectives, giving an answer to the social, environmental and economic requirements. For that the authors have used multi-criteria decision methods to qualify and select alternatives, and for the programming of their implementation. In the model the authors have contemplated the short, average and long term actions. They conform a Paretooptimal alternative which secures the ordering, integral and suitable management of the basin of the Arenales River, focusing on its passage by the city of Salta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fractal Image Informatics toolbox (Oleschko et al., 2008 a; Torres-Argüelles et al., 2010) was applied to extract, classify and model the topological structure and dynamics of surface roughness in two highly eroded catchments of Mexico. Both areas are affected by gully erosion (Sidorchuk, 2005) and characterized by avalanche-like matter transport. Five contrasting morphological patterns were distinguished across the slope of the bare eroded surface of Faeozem (Queretaro State) while only one (apparently independent on the slope) roughness pattern was documented for Andosol (Michoacan State). We called these patterns ?the roughness clusters? and compared them in terms of metrizability, continuity, compactness, topological connectedness (global and local) and invariance, separability, and degree of ramification (Weyl, 1937). All mentioned topological measurands were correlated with the variance, skewness and kurtosis of the gray-level distribution of digital images. The morphology0 spatial dynamics of roughness clusters was measured and mapped with high precision in terms of fractal descriptors. The Hurst exponent was especially suitable to distinguish between the structure of ?turtle shell? and ?ramification? patterns (sediment producing zone A of the slope); as well as ?honeycomb? (sediment transport zone B) and ?dinosaur steps? and ?corals? (sediment deposition zone C) roughness clusters. Some other structural attributes of studied patterns were also statistically different and correlated with the variance, skewness and kurtosis of gray distribution of multiscale digital images. The scale invariance of classified roughness patterns was documented inside the range of five image resolutions. We conjectured that the geometrization of erosion patterns in terms of roughness clustering might benefit the most semi-quantitative models developed for erosion and sediment yield assessments (de Vente and Poesen, 2005).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diffusion controls the gaseous transport process in soils when advective transport is almost null. Knowledge of the soil structure and pore connectivity are critical issues to understand and modelling soil aeration, sequestration or emission of greenhouse gasses, volatilization of volatile organic chemicals among other phenomena. In the last decades these issues increased our attention as scientist have realize that soil is one of the most complex materials on the earth, within which many biological, physical and chemical processes that support life and affect climate change take place. A quantitative and explicit characterization of soil structure is difficult because of the complexity of the pore space. This is the main reason why most theoretical approaches to soil porosity are idealizations to simplify this system. In this work, we proposed a more realistic attempt to capture the complexity of the system developing a model that considers the size and location of pores in order to relate them into a network. In the model we interpret porous soils as heterogeneous networks where pores are represented by nodes, characterized by their size and spatial location, and the links representing flows between them. In this work we perform an analysis of the community structure of porous media of soils represented as networks. For different real soils samples, modelled as heterogeneous complex networks, spatial communities of pores have been detected depending on the values of the parameters of the porous soil model used. These types of models are named as Heterogeneous Preferential Attachment (HPA). Developing an exhaustive analysis of the model, analytical solutions are obtained for the degree densities and degree distribution of the pore networks generated by the model in the thermodynamic limit and shown that the networks exhibit similar properties to those observed in other complex networks. With the aim to study in more detail topological properties of these networks, the presence of soil pore community structures is studied. The detection of communities of pores, as groups densely connected with only sparser connections between groups, could contribute to understand the mechanisms of the diffusion phenomena in soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agriculture is a major consumer of energy in many countries of the world. Only a few of these countries are self-sufficient in conventional energy sources, which are also exhaustible. Fortunately, there are other sources of energy, such as wind, which has experienced recent developments in the area of wind power generation. From irrigation projects to power supply in remote farms, wind power generation can play a vital role. A simple methodology for technical evaluation of windmills for irrigation water pumping has been developed in this study to determine the feasibility per unit amount of water supplied and the levels of daily irrigation demand satisfied by windmill irrigation system at various levels of risk (probability of failure). For this purpose, a series of three hourly wind-speed data over a period of 38 years at Ciego de Ávila, Cuba, were analyzed to compute the diurnal wind pump discharge at varying levels of risk. The sizes of reservoirs required to modulate fluctuating discharge and to satisfy the levels of irrigation demand, on function of crop development dates, cultivated area and water elevation height, were computed by cumulative deficit water budgeting. An example is given illustrating the use of the methodology on tomato crop Licopersicon esculentum Mill) under greenhouse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ebro River Basin, with around 85 000 km2 and located in NE Spain, is characterized by the high spatial heterogeneity of its geology, topography, climatology and land use. Rainfall is one of the most important climatic variables studied owing to its non-homogenous behaviour in event and intensity, which creates drought, water runoff and soil erosion with negative environmental and social consequences. In this work we characterized the rainfall variability pattern in the Ebro River Basin using universal multifractal (UM) analysis, which estimates the concentration of the data around the precipitation average (C1, codimension average), the degree of multiscaling behaviour in time (? index) and the maximum probable singularity in the rainfall distribution ( s). A spatial and temporal analysis of the UM parameters is applied to study the possible changes. With this porpoise, 60 daily rainfall series were selected from 132 synthetic series generated by Luna and Balairón (AEMet). These daily rainfall series present a length of 60 years, from 1950 to 2009. Each one of them was subdivided (1950?1970 and 1980?2009) to analyse the difference between the two periods. The range of variation of precipitation amounts and the frequency of dry events between both periods are discussed, as well as the evolution of the UM parameters through the years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors are from UPM and are relatively grouped, and all have intervened in different academic or real cases on the subject, at different times as being of different age. With precedent from E. Torroja and A. Páez in Madrid Spain Safety Probabilistic models for concrete about 1957, now in ICOSSAR conferences, author J.M. Antón involved since autumn 1967 for euro-steel construction in CECM produced a math model for independent load superposition reductions, and using it a load coefficient pattern for codes in Rome Feb. 1969, practically adopted for European constructions, giving in JCSS Lisbon Feb. 1974 suggestion of union for concrete-steel-al.. That model uses model for loads like Gumbel type I, for 50 years for one type of load, reduced to 1 year to be added to other independent loads, the sum set in Gumbel theories to 50 years return period, there are parallel models. A complete reliability system was produced, including non linear effects as from buckling, phenomena considered somehow in actual Construction Eurocodes produced from Model Codes. The system was considered by author in CEB in presence of Hydraulic effects from rivers, floods, sea, in reference with actual practice. When redacting a Road Drainage Norm in MOPU Spain an optimization model was realized by authors giving a way to determine the figure of Return Period, 10 to 50 years, for the cases of hydraulic flows to be considered in road drainage. Satisfactory examples were a stream in SE of Spain with Gumbel Type I model and a paper of Ven Te Chow with Mississippi in Keokuk using Gumbel type II, and the model can be modernized with more varied extreme laws. In fact in the MOPU drainage norm the redacting commission acted also as expert to set a table of return periods for elements of road drainage, in fact as a multi-criteria complex decision system. These precedent ideas were used e.g. in wide Codes, indicated in symposia or meetings, but not published in journals in English, and a condensate of contributions of authors is presented. The authors are somehow involved in optimization for hydraulic and agro planning, and give modest hints of intended applications in presence of agro and environment planning as a selection of the criteria and utility functions involved in bayesian, multi-criteria or mixed decision systems. Modest consideration is made of changing in climate, and on the production and commercial systems, and on others as social and financial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extreme weather and climate events have received increased attention in the last few years, due to the often large loss of agriculture business and exponentially increasing costs associated with them and insurance planning. This increased attention raises the question as to whether extreme weather and climate events are truly increasing, whether this is only a perceived increase exacerbated by enhanced media coverage, or both. There are a number of ways extreme climate events can be defined, such as extreme daily temperatures, extreme daily rainfall amounts, and large areas experiencing unusually warm monthly temperatures, among others. In this study, we will focus our attention in frost and heatstroke events measuring it as the number of days under 0 ºC and number of days with daily maximum over 30ºC monthly respectively. We have studied the trends in these extreme events applying a Fast Fourier Transform to the series to clarify the tendency. Lack of long-term climate data suitable for analysis of extremes is the single biggest obstacle to quantifying whether extreme events have changed over the twentieth century, including high temporal and spatial resolution observations of temperatures. However, several series have been grouped in different ways: chosen the longest series independently, by provinces, by main watersheds and altitude. On the other hand, synthetic series generated by Luna and Balairón (AEMet) were also analyzed. The results obtained by different pooling data are discussed concluding the difficulties to assess the extreme events tendencies and high regional variation in the trends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Digital Elevation Model (DEM) provides the information basis used for many geographic applications such as topographic and geomorphologic studies, landscape through GIS (Geographic Information Systems) among others. The DEM capacity to represent Earth?s surface depends on the surface roughness and the resolution used. Each DEM pixel depends on the scale used characterized by two variables: resolution and extension of the area studied. DEMs can vary in resolution and accuracy by the production method, although there are statistical characteristics that keep constant or very similar in a wide range of scales. Based on this property, several techniques have been applied to characterize DEM through multiscale analysis directly related to fractal geometry: multifractal spectrum and the structure function. The comparison of the results by both methods is discussed. The study area is represented by a 1024 x 1024 data matrix obtained from a DEM with a resolution of 10 x 10 m each point, which correspond with a region known as ?Monte de El Pardo? a property of Spanish National Heritage (Patrimonio Nacional Español) of 15820 Ha located to a short distance from the center of Madrid. Manzanares River goes through this area from North to South. In the southern area a reservoir is found with a capacity of 43 hm3, with an altitude of 603.3 m till 632 m when it is at the highest capacity. In the middle of the reservoir the minimum altitude of this area is achieved.