984 resultados para COMMUNICATION VHF CHANNEL
Resumo:
This paper aims at illustrating some applications of Finite Random Set (FRS) theory to the design and analysis of wireless communication receivers, and at pointing out similarities and differences between this scenario and that pertaining to multi-target tracking, where the use of FRS has been traditionally advocated. Two case studies are considered, l.e., multiuser detection in a dynamic environment, and multicarrier (OFDM) transmission on a frequency-selective channel. Detector designand performance evaluation are discussed, along with the advantages of importing FRS-based estimation techniques to the context of wireless communications.
Resumo:
In this paper, we introduce a pilot-aided multipath channel estimator for Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems. Typical estimation algorithms assume the number of multipath components and delays to be known and constant, while theiramplitudes may vary in time. In this work, we focus on the more realistic assumption that also the number of channel taps is unknown and time-varying. The estimation problem arising from this assumption is solved using Random Set Theory (RST), which is a probability theory of finite sets. Due to the lack of a closed form of the optimal filter, a Rao-Blackwellized Particle Filter (RBPF) implementation of the channel estimator is derived. Simulation results demonstrate the estimator effectiveness.
Resumo:
We examine a multiple-access communication system in which multiuser detection is performed without knowledge of the number of active interferers. Using a statistical-physics approach, we compute the single-user channel capacity and spectral efficiency in the large-system limit.
Resumo:
Échelle(s) : [ca 1:200 000], échelle de 0,01 pour 2000 mètres
Resumo:
L'étude de la communication à trois entre le bébé, le père et la mère au travers du jeu du trilogue lausannois montre que la communication intersubjective dans la famille suit la même trajectoire développementale que la communication intersubjective à deux entre le bébé et sa mère ou son père : d'une forme primaire ou directe, elle évolue vers une forme secondaire ou référentielle, pour intégrer ensuite des formes symbolique et morale et enfin narrative.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.
Resumo:
Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.
Resumo:
We analyze the role of commitment in pre-play communication for ensuring efficient evolutionarily stable outcomes in coordination games. All players are a priori identical as they are drawn from the same population. In games where efficient outcomes can be reached by players coordinating on the same action we find commitment to be necessary to enforce efficiency. In games where efficienct outcomes only result from play of different actions, communication without commitment is most effective although efficiency can no longer be guaranteed. Only when there are many messages then inefficient outcomes are negligible as their basins of attraction become very small.
Resumo:
O objetivo do estudo é descrever o processo de adaptação e validação da escala Partner Communication Scale -PCS com adolescentes do sexo feminino em Fortaleza, CE. Pesquisa metodológica, de abordagem quantitativa, realizada com 313 adolescentes, entre 14 a 18 anos, que já haviam tido o primeiro intercurso sexual. O processo de adaptação transcultural seguiu as etapas: tradução, retrotradução, avaliação das traduções por um comitê de juízes e teste da versão pré-final. A escala foi aplicada com um questionário sociodemográfico e de variáveis sexuais e reprodutivas, via computador, em novembro/2010 a janeiro/2011. A confiabilidade foi verificada por meio do teste alfa de Cronbach (0.86) e demonstrou que pode ser aplicada no cenário da atenção primária à saúde, durante as consultas de enfermagem ao adolescente, e que permite identificar fatores que dificultam/facilitam a comunicação, principalmente em relação às DST/HIV. A escala mostrou-se adequada para verificar a comunicação entre os parceiros sexuais na adolescência.
Resumo:
Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.
Resumo:
This is an exploratory, cross-sectional study of quantitative design that aimed to identify the communication strategies used and reported by the nursing staff in the care of aphasic patients after a stroke. The techniques used were the participant observation and interviews with 27 subjects of the nursing staff of neurological units in a general hospital. The most frequently mentioned strategies were gestures (100%), verbal communication (33.3%), written communication (29.6%) and the touch (18.5 %). Among the observed strategies, the gestures reached 40.7% and the touch was present in all situations, given its instrumental character essential to care. The findings show lack of knowledge of nonverbal, proxemics , kinesics and tacesics communication. No significant differences were observed among the professional categories depending on the length of experience with respect to the strategies reported by members of the nursing staff in the care for aphasic patients.
Resumo:
Peter Karlson and Martin Lüscher used the term pheromone for the first time in 1959 to describe chemicals used for intra-species communication. Pheromones are volatile or non-volatile short-lived molecules secreted and/or contained in biological fluids, such as urine, a liquid known to be a main source of pheromones. Pheromonal communication is implicated in a variety of key animal modalities such as kin interactions, hierarchical organisations and sexual interactions and are consequently directly correlated with the survival of a given species. In mice, the ability to detect pheromones is principally mediated by the vomeronasal organ (VNO), a paired structure located at the base of the nasal cavity, and enclosed in a cartilaginous capsule. Each VNO has a tubular shape with a lumen allowing the contact with the external chemical world. The sensory neuroepithelium is principally composed of vomeronasal bipolar sensory neurons (VSNs). Each VSN extends a single dendrite to the lumen ending in a large dendritic knob bearing up to 100 microvilli implicated in chemical detection. Numerous subpopulations of VSNs are present. They are differentiated by the chemoreceptor they express and thus possibly by the ligand(s) they recognize. Two main vomeronasal receptor families, V1Rs and V2Rs, are composed respectively by 240 and 120 members and are expressed in separate layers of the neuroepithelium. Olfactory receptors (ORs) and formyl peptide receptors (FPRs) are also expressed in VSNs. Whether or not these neuronal subpopulations use the same downstream signalling pathway for sensing pheromones is unknown. Despite a major role played by a calcium-permeable channel (TRPC2) present in the microvilli of mature neurons TRPC2 independent transduction channels have been suggested. Due to the high number of neuronal subpopulations and the peculiar morphology of the organ, pharmacological and physiological investigations of the signalling elements present in the VNO are complex. Here, we present an acute tissue slice preparation of the mouse VNO for performing calcium imaging investigations. This physiological approach allows observations, in the natural environment of a living tissue, of general or individual subpopulations of VSNs previously loaded with Fura-2AM, a calcium dye. This method is also convenient for studying any GFP-tagged pheromone receptor and is adaptable for the use of other fluorescent calcium probes. As an example, we use here a VG mouse line, in which the translation of the pheromone V1rb2 receptor is linked to the expression of GFP by a polycistronic strategy.