917 resultados para CEREBRAL GLUCOSE-METABOLISM


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Early impaired cerebral blood flow (CBF) after severe head injury (SHI) leads to poor brain tissue oxygen delivery and lactate accumulation. The purpose of this investigation was to elucidate the relationship between CBF, local dialysate lactate (lact(md)) and dialysate glucose (gluc(md)), and brain tissue oxygen levels (PtiO2) under arterial normoxia. The effect of increased brain tissue oxygenation due to high fractions of inspired oxygen (FiO2) on lact(md) and CBF was explored. A total of 47 patients with SHI were enrolled in this studies (Glasgow Coma Score [GCS] < 8). CBF was first assessed in 40 patients at one time point in the first 96 hours (27 +/- 28 hours) after SHI using stable xenon computed tomography (Xe-CT) (30% inspired xenon [FiXe] and 35% FiO2). In a second study, sequential double CBF measurements were performed in 7 patients with 35% FiO2 and 60% FiO2, respectively, with an interval of 30 minutes. In a subsequent study, 14 patients underwent normobaric hyperoxia by increasing FiO2 from 35 +/- 5% to 60% and then 100% over a period of 6 hours. This was done to test the effect of normobaric hyperoxia on lact(md) and brain gluc(md), as measured by local microdialysis. Changes in PtiO2 in response to changes in FiO2 were analyzed by calculating the oxygen reactivity. Oxygen reactivity was then related to the 3-month outcome data. The levels of lact(md) and gluc(md) under hyperoxia were compared with the baseline levels, measured at 35% FiO2. Under normoxic conditions, there was a significant correlation between CBF and PtiO2 (R = 0.7; P < .001). In the sequential double CBF study, however, FiO2 was inversely correlated with CBF (P < .05). In the 14 patients undergoing the 6-hour 100% FiO2 challenge, the mean PtiO2 levels increased to 353 (87% compared with baseline), although the mean lact(md) levels decreased by 38 +/- 16% (P < .05). The PtiO2 response to 100% FiO2 (oxygen reactivity) was inversely correlated with outcome (P < .01). Monitoring PtiO2 after SHI provides valuable information about cerebral oxygenation and substrate delivery. Increasing arterial oxygen tension (PaO2) effectively increased PtiO2, and brain lact(md) was reduced by the same maneuver.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Functional brain mapping based on changes in local cerebral blood flow (lCBF) or glucose utilization (lCMRglc) induced by functional activation is generally carried out in animals under anesthesia, usually α-chloralose because of its lesser effects on cardiovascular, respiratory, and reflex functions. Results of studies on the role of nitric oxide (NO) in the mechanism of functional activation of lCBF have differed in unanesthetized and anesthetized animals. NO synthase inhibition markedly attenuates or eliminates the lCBF responses in anesthetized animals but not in unanesthetized animals. The present study examines in conscious rats and rats anesthetized with α-chloralose the effects of vibrissal stimulation on lCMRglc and lCBF in the whisker-to-barrel cortex pathway and on the effects of NO synthase inhibition with NG-nitro-l-arginine methyl ester (l-NAME) on the magnitude of the responses. Anesthesia markedly reduced the lCBF and lCMRglc responses in the ventral posteromedial thalamic nucleus and barrel cortex but not in the spinal and principal trigeminal nuclei. l-NAME did not alter the lCBF responses in any of the structures of the pathway in the unanesthetized rats and also not in the trigeminal nuclei of the anesthetized rats. In the thalamus and sensory cortex of the anesthetized rats, where the lCBF responses to stimulation had already been drastically diminished by the anesthesia, l-NAME treatment resulted in loss of statistically significant activation of lCBF by vibrissal stimulation. These results indicate that NO does not mediate functional activation of lCBF under physiological conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The incidence of cerebral edema during therapy of diabetic ketoacidosis (DKA) in children remains unacceptably high-this suggests that current treatment may not be ideal and that important risk factors for the development of cerebral edema have not been recognized. We suggest that there are two major sources for an occult generation of osmole-free water in these patients: first, fluid with a low concentration of electrolytes that was retained in the lumen of the stomach when the patient arrived in hospital; second, infusion of glucose in water at a time when this solution can be converted into water with little glucose. In a retrospective chart review of 30 patients who were admitted with a diagnosis of DKA and a blood sugar > 900 mg/dL (50 mmol/L), there were clues to suggest that some of the retained fluid in the stomach was absorbed. To minimize the likelihood of creating a dangerous degree of cerebral edema in patients with DKA, it is important to define the likely composition of fluid retained in the stomach on admission, to look for signs of absorption of some of this fluid during therapy, and to be especially vigilant once fat-derived brain fuels have disappeared, because this is the time when glucose oxidation in the brain should increase markedly, generating osmole-free water.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RESUMO: Na sociedade contemporânea a diabetes tipo 2 e a obesidade estão a aumentar exponencialmente, representando um grave problema de saúde pública. De acordo com a IDF “A diabetes e a obesidade são o principal problema de saúde pública do século XXI’. Para além destas duas patologias, a prevalência de esteatose hepática não-alcoólica (NAFLD), entre a população obesa e diabética, é de cerca de 90%. O aumento da obesidade, diabetes e NAFLD tem uma forte correlação com o aumento do consumo de gorduras e açúcares, acompanhado de um decréscimo acentuado da actividade física. A obesidade, diabetes e NAFLD tem sido escrupolosamente investigada mas as terapêuticas disponíveis continuam a ser muito limitadas. Tendo em conta o número crescente e alarmante de obesos e diabéticos o conhecimento detalhado da patofisiologia da obesidade, diabetes e NAFLD, tendo em vista a necessidade extrema de desenvolvimento de novas estratégias terapêuticas, é da mais elevada urgência. O fígado é reconhecido como um orgão primordial no controlo da homeostase. No estado pós-prandial, o fígado converte a glucose em glicogénio e lípidos. Em contraste, no estado de jejum, o fígado promove a produção de glucose. Sistemas neuronais e hormonais, bem como o estado metabólico do fígado, controlam de forma muito precisa a alternância entre os diferentes substratos metabólicos, dependente do estado prandial. A insulina tem um papel central no controlo do metabolismo energético no fígado; se, por um lado, inibe a produção hepática de glucose e corpos cetónicos, por outro, promove a glicólise e a lipogénese. O metabolismo energético no fígado é também regulado por vários factores de transcrição e co-reguladores que, por sua vez, são regulados pela insulina, glucagina e outras hormonas metabólicas. Em conjunto, todos estes factores e reguladores vão controlar de forma muito estreita a gluconeogénese, a β-oxidação e a lipogénese, no fígado. Para além dos já conhecidos reguladores do metabolismo hepático, novas moléculas têm sido estudadas como tendo um papel fundamental na regulação do metabolismo energético no fígado. Qualquer desequilíbrio no metabolismo hepático vai contribuir para a insulino-resistência, NAFLD e diabetes tipo 2. O principal objectivo do trabalho de investigação aqui apresentado é o contributo para o estudo detalhado da patogénese da diabetes e obesidade, num contexto de dietas ricas em açúcares e gorduras, e com a perspectiva de explorar novas estratégias terapêuticas. Os objectivos específicos deste trabalho eram: primeiro, determinar se o tratamento com glutationo (GSH) e óxido nítrico (NO) era suficiente para melhorar a insulino-resistência associada ao elevado consumo de sacarose; segundo, determinar o papel da Rho-kinase 1 (ROCK1) na regulação do metabolismo hepático da glucose e dos lípidos; e terceiro, estudar o efeito do metilsulfonilmetano (MSM) em doenças metabólicas associadas à obesidade. Na primeira parte deste trabalho de investigação foram utilizados ratos Wistar machos sujeitos a uma dieta rica em sacarose (HS). Tal como esperado, estes animais apresentavam insulino-resistência e hiperinsulinémia. A dieta HS levou ao aumento dos níveis hepáticos de NO e ao decréscimo dos níveis de GSH no fígado. Em jejum, a administração intraportal de GSH e NO, a animais saudáveis promoveu um aumento significativo da sensibilidade à insulina. Também nestes animais, a administração intravenosa de S-nitrosotióis, compostos orgânicos que contém um grupo nitroso acoplado a um átomo de enxofre de um tiol, promoveu o aumento significativo da sensibilidade à insulina. Pelo contrário, em animais sujeitos à dieta HS, as doses padrão de GSH + NO e de S-nitrosotióis não conseguiram promover o aumento da sensibilidade à insulina. No entanto, ao aumentar a dose de S-nitrosotióis administrados por via intravenosa, foi possível observar o aumento da sensibilidade à insulina dependente da dose, indicando um possível papel dos S-nitrosotióis como sensibilizadores de insulina. O estudo detalhado do papel dos S-nitrosotióis na via de sinalização da insulina revelou que há um aumento da fosforilação do receptor da insulina (IR) e da proteína cinase B (Akt), sugerindo um efeito dos S-nitrosotióis nesta via de sinalização. Os resultados apresentados nesta primeira parte sugerem que os S-nitrosotióis promovem a correcta acção da insulina, podendo vir a ser importantes alvos terapêuticos. Na segunda parte deste trabalho de investigação utilizámos murganhos, com uma delecção específica da ROCK1 no fígado, e sujeitos a uma dieta rica em lípidos (HFD). Foi possível concluir que a ausência da ROCK1 no fígado previne a obesidade, melhora a sensibilidade à insulina e protege contra a esteatose hepática. A ausência de ROCK1 no fígado levou a um decréscimo significativo da expressão génica de genes associados à lipogénese, com uma diminuição acentuada do fluxo metabólico associado a esta via. Pelo contrário, a sobreexpressão de ROCK1, exclusivamente no fígado, promove a insulino-resistência e a esteatose hepática no contexto de obesidade induzida pela dieta. Para além disto, a delecção da ROCK1 no fígado de animais obesos e diabéticos, os murganhos deficientes em leptina, corroborou os dados obtidos no primeiro modelo animal, com a franca melhoria da hiperglicémia, hiperinsulinémia e esteatose hepática. Os dados que compõem esta parte do trabalho de investigação sugerem que a ROCK1 tem um papel crucial na regulação do metabolismo lipídico. Na terceira e última parte deste trabalho de investigação foi investigado o efeito do composto metilsulfunilmetano (MSM), um composto organosulfúrico naturalmente presente em plantas e utilizado também como suplemento dietético, em murganhos obesos e insulino-resistentes, por exposição a uma dieta rica em lípidos (DIO). O tratamento com MSM melhorou a insulino-resistência e protegeu contra a esteatose hepática. O conteúdo hepático em triglicéridos e colesterol também diminuíu de forma significativa nos animais DIO sujeitos ao tratamento com MSM, bem como a expressão génica associada à lipogénese. Para além disto, o tratamento com MSM levou a uma diminuição da expressão génica associada à inflamação. De realçar que o tratamento com MSM levou a uma melhoria do perfil hematopoiético destes animais, tanto na medula óssea como no sangue. Para comprovar o efeito benéfico do MSM na obesidade e insulino-resistência utilizámos murganhos deficientes no receptor da leptina, e por isso obesos e diabéticos, tendo observado um perfil semelhante ao obtido para murganhos sujeitos a uma dieta rica em lípidos e tratados com MSM. Concluímos, através dos dados recolhidos, que o MSM como suplemento pode ter efeitos benéficos na hiperinsulinémia, insulino-resistência e inflamação que caracterizam a diabetes tipo 2. Em resumo, os dados obtidos neste trabalho de investigação mostram que os S-nitrosotióis podem ter um papel importante como sensibilizadores da insulina, promovendo um aumento da sensibilidade à insulina num contexto de dietas ricas em sacarose. Para além disto, estudos in vitro, sugerem que os S-nitrosotióis regulam, especificamente, a via de sinalização da insulina. Este trabalho teve também como objectivo o estudo da ROCK1 como regulador do metabolismo da glucose e dos lípidos no fígado. Através do estudo de animais com uma delecção ou uma sobreexpressão da ROCK1 no fígado mostrou-se que esta tem um papel crucial na patogénese da obesidade e diabetes tipo 2, especificamente através do controlo da lipogénese de novo. Finalmente, foi também objectivo deste trabalho, explorar o efeito do MSM em animais DIO e deficientes em leptina. O tratamento com MSM protege de forma evidente contra a obesidade e insulino-resistência, com especial enfâse para a capacidade que esta molécula demonstrou ter na protecção contra a inflamação. Em conjunto os vários estudos aqui apresentados mostram que tanto os S-nitrosotióis como a ROCK1 têm um papel na patogénese da obesidade e diabetes tipo 2 e que a utilização de MSM como suplemento às terapêuticas convencionais pode ter um papel no tratamentos de doenças metabólicas.-------------------------------ABSTRACT: In modern western societies type 2 diabetes and obesity are increasing exponentially, representing a somber public concern. According to the International Diabetes Federation (IDF) ‘Diabetes and Obesity are the biggest public health challenges of the 21st century’. Aside from these the prevalence of nonalcoholic fatty liver disease (NAFLD), among the diabetic and obese population, is as high as 90%. It is now well established that the increase in obesity, diabetes and NAFLD strongly correlates with an increase in fat and sugar intake in our diet, alongside physical inactivity. The pathogenesis of obesity, diabetes and NAFLD has been thoroughly studied but the treatment options available are still narrow. Considering the alarming number in the obese and diabetic population the complete understanding of the pathogenesis, keeping in mind that new therapeutic strategies need to be attained, is of the highest urgency. The liver has been well established as a fundamental organ in regulating whole-body homeostasis. In the fed state the liver converts the glucose into glycogen and lipids. Conversely, in the fasted state, glucose will be produced in the liver. Neuronal and hormonal systems, as well as the hepatic metabolic states, tightly control the fast to fed switch in metabolic fuels. Insulin has a central role in controlling hepatic energy metabolism, by suppressing glucose production and ketogenesis, while stimulating glycolysis and lipogenesis. Liver energy metabolism is also regulated by various transcription factors and coregulators that are, in turn, regulated by insulin, glucagon and other metabolic hormones. Together, these regulators will act to control gluconeogenesis, β-oxidation and lipogenesis in the liver. Aside from the well-established regulators of liver energy metabolism new molecules are being studied has having a role in regulating hepatic metabolism. Any imbalance in the liver energy metabolism is a major contributor to insulin resistance, NAFLD and type 2 diabetes. The overall goal of this research work was to contribute to the understanding of the pathogenesis of diabetes and obesity, on a setting of high-sucrose and high-fat diets, and to explore potential therapeutic options. The specific aims were: first, to determine if treatment with glutathione (GSH) and nitric oxide (NO) was sufficient to ameliorate insulin resistance induced by high-sucrose feeding; second, to determine the physiological role of rho-kinase 1 (ROCK1) in regulating hepatic and lipid metabolism; and third, to study the effect of methylsulfonylmethane (MSM) on obesity-linked metabolic disorders. In the first part of this research work we used male Wistar rats fed a high-sucrose (HS) diet. As expected, rats fed a HS diet were insulin resistant and hyperinsulinemic. HS feeding increased hepatic levels of NO, while decreasing GSH. In fasted healthy animals administration of both GSH and NO, to the liver, was able to increase insulin sensitivity. Intravenous administration of S-nitrosothiols, organic compounds containing a nitroso group attached to the sulfur atom of a thiol, in fasted control animals also increased insulin sensitivity. Under HS feeding the standard doses of GSH + NO and S-nitrosothiols were unable to promote an increase in insulin sensitivity. However, the intravenous administration of increasing concentrations of S-nitrosothiols was able to restore insulin sensitivity, suggesting that S-nitrosothiols have an insulin sensitizing effect. Investigation of the effect of S-nitrosothiols on the insulin signaling pathway showed increased phosphorylation of the insulin receptor (IR) and protein kinase B (Akt), suggesting that S-nitrosothiols may have an effect on the insulin signaling pathway. Together, these data showed that S-nitrosothiols promote normal insulin action, suggesting that they may act as potential pharmacological tools. In the second part of this research work we used liver-specific ROCK1 knockout mice fed a high-fat (HF) diet. Liver-specific deletion of ROCK1 prevented obesity, improved insulin sensitivity and protected against hepatic steatosis. Deficiency of ROCK1 in the liver caused a significant decrease in the gene expression of lipogenesis associated gene, ultimately leading to decreased lipogenesis. Contrariwise, ROCK1 overexpression in the liver promoted insulin resistance and hepatic steatosis in diet-induced obesity. Furthermore, liver-specific deletion of ROCK1 in obese and diabetic mice, the leptin-deficient mice, improved the typical hyperglycemia, hyperinsulinemia and liver steatosis. Together, these data identify ROCK1 as a crucial regulator of lipid metabolism. In the third and final part of this research work we investigated the effect of MSM, an organosulfur compound naturally found in plants and used as a dietary supplement, on diet-induced obese (DIO) and insulin resistant mice. MSM treatment ameliorated insulin resistance and protected against hepatosteatosis. Hepatic content in triglycerides and cholesterol was significantly decreased by MSM treatment, as well as lipogenesis associated gene expression. Furthermore, MSM treated mice had decreased inflammation associated gene expression in the liver. Importantly, FACS analysis showed that MSM treatment rescued the inflammatory hematopoietic phenotype of DIO mice in the bone marrow and the peripheral blood. Moreover, MSM treatment of the obese and diabetic mice, the leptin-deficient mice, resulted in similar effects as the ones observed for DIO mice. Collectively, these data suggest that MSM supplementation has a beneficial effect on hyperinsulinemia, insulin resistance and inflammation, which are often found in type 2 diabetes. In conclusion, this research work showed that S-nitrosothiols may play a role as insulin sensitizers, restoring insulin sensitivity in a setting of high-sucrose induced insulin resistance. Furthermore, in vitro studies suggest that S-nitrosothiols specifically regulate the insulin signaling pathway. This research work also investigated the role of hepatic ROCK1 in regulation of glucose and lipid metabolism. Using liver-specific ROCK 1 knockout and ROCK1 overexpressing mice it was shown that ROCK1 plays a role in the pathogenesis of obesity and type 2 diabetes, specifically through regulation of the de novo lipogenesis pathway. Finally, this research work aimed to explore the effect of MSM in DIO and leptin receptor-deficient mice. MSM strongly protects against obesity and insulin resistance, moreover showed a robust ability to decrease inflammation. Together, the individual studies that compose this dissertation showed that S-nitrosothiols and ROCK1 play a role in the pathogenesis of obesity and type 2 diabetes and that MSM supplementation may have a role in the treatment of metabolic disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To determine the mechanisms that prevent an increase in gluconeogenesis from increasing hepatic glucose output, six healthy women were infused with [1-13C]fructose (22 mumol.kg-1.min-1), somatostatin, insulin, and glucagon. In control experiment, non-13C-enriched fructose was infused at the same rate without somatostatin, and [U-13C]glucose was infused to measure specifically plasma glucose oxidation. Endogenous glucose production (EGP, [6,6-2H]glucose), net carbohydrate oxidation (CHOox, indirect calorimetry), and fructose oxidation (13CO2) were measured. EGP rate did not increase after fructose infusion with (13.1 +/- 1.2 vs. 12.9 +/- 0.3 mumol.kg-1.min-1) and without (10.3 +/- 0.5 vs. 9.7 +/- 0.5 mumol.kg-1.min-1) somatostatin, despite the fact that gluconeogenesis increased. Nonoxidative fructose disposal, corresponding mainly to glycogen synthesis, was threefold net glycogen deposition, the latter calculated as fructose infusion minus CHOox (14.8 +/- 1.1 and 4.3 +/- 2.0 mumol.kg-1.min-1). It is concluded that 1) the mechanism by which EGP remains constant when gluconeogenesis from fructose increases is independent of changes in insulin and 2) simultaneous breakdown and synthesis of glycogen occurred during fructose infusion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

HYPOTHESIS: Liver transplantation results in hepatic denervation. This may produce alterations of liver energy and substrate metabolism, which may contribute to weight gain after liver transplantation. DESIGN: Prospective clinical study. SETTING: Liver transplantation clinics in a university hospital. PATIENTS: Seven nondiabetic patients with cirrhosis were recruited while on a waiting list for liver transplantation. Seven healthy subjects were recruited as controls. INTERVENTION: Orthotopic liver transplantation. MAIN OUTCOME MEASURES: Evaluation of energy and substrate metabolism after ingestion of a glucose load with indirect calorimetry was performed before, 2 to 6 weeks after, and 5 to 19 months after transplantation. Whole-body glucose oxidation and storage and glucose-induced thermogenesis were calculated. RESULTS: Patients with cirrhosis had modestly elevated resting energy expenditure and normal glucose-induced thermogenesis and postprandial glucose oxidation and storage. These measures remained unchanged after liver transplantation despite a significant increase in postprandial glycemia. Patients, however, gained an average of 3 kg of body weight after 5 to 19 months compared with their weight before transplantation. CONCLUSION: Liver denervation secondary to transplantation does not lead to alterations of energy metabolism after ingestion of a glucose load.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Following a former immunohistochemical study in the rat brain [Arluison, M., Quignon, M., Nguyen, P., Thorens, B., Leloup, C., Penicaud, L. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. I. Immunohistochemical study. J. Chem. Neuroanat., in press], we have analyzed the ultrastructural localization of GLUT2 in representative and/or critical areas of the forebrain and hindbrain. In agreement with previous results, we observe few oligodendrocyte and astrocyte cell bodies discretely labeled for GLUT2 in large myelinated fibre bundles and most brain areas examined, whereas the reactive glial processes are more numerous and often localized in the vicinity of nerve terminals and/or dendrites or dendritic spines forming synaptic contacts. Only some of them appear closely bound to unlabeled nerve cell bodies and dendrites. Furthermore, the nerve cell bodies prominently immunostained for GLUT2 are scarce in the brain nuclei examined, whereas the labeled dendrites and dendritic spines are relatively numerous and frequently engaged in synaptic junctions. In conformity with the observation of GLUT2-immunoreactive rings at the periphery of numerous nerve cell bodies in various brain areas (see previous paper), we report here that some neuronal perikarya of the dorsal endopiriform nucleus/perirhinal cortex exhibit some patches of immunostaining just below the plasma membrane. However, the presence of many GLUT2-immunoreactive nerve terminals and/or astrocyte processes, some of them being occasionally attached to nerve cell bodies and dendrites, could also explain the pericellular labeling observed. The results here reported support the idea that GLUT2 may be expressed by some cerebral neurones possibly involved in glucose sensing, as previously discussed. However, it is also possible that this transporter participate in the regulation of neurotransmitter release and, perhaps, in the release of glucose by glial cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well established that lactate can be used as an energy substrate by the brain by conversion to pyruvate and a subsequent oxidation in the mitochondria. Knowing the need for readily metabolizable substrates directly after ischemia and the protective effect of lactate after excitotoxicity, the aim of this study was to investigate whether lactate administration directly after ischemia could be neuroprotective. In vitro, the addition of 4 mmol/L L-lactate to the medium of rat organotypic hippocampal slices, directly after oxygen and glucose deprivation (OGD), protected against neuronal death, whereas a higher dose of 20 mmol/L was toxic. In vivo, after middle cerebral artery occlusion in the mouse, an intracerebroventricular injection of 2 microL of 100 mmol/L L-lactate, immediately after reperfusion, led to a significant decrease in lesion size, which was more pronounced in the striatum, and an improvement in neurologic outcome. A later injection 1 h after reperfusion did not reduce lesion size, but significantly improved neurologic outcome, which is an important point in the context of a potential clinical application. Therefore, a moderate increase in lactate after ischemia may be a therapeutic tool.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: The liver plays an important role in glucose and lactate metabolism. Major hepatectomy may therefore be suspected to cause alterations of glucose and lactate homeostasis. METHODS: Thirteen subjects were studied: six patients after major hepatectomy and seven healthy subjects who had fasted overnight. Glucose turnover was measured with 6,6(2)H glucose. Lactate metabolism was assessed using two complementary approaches: 13C-glucose synthesis and 13CO2 production from an exogenous 13C-labeled lactate load infused over 15 minutes were measured, then the plasma lactate concentrations observed over 185 minutes after lactate load were fitted using a biexponential model to calculate lactate clearance, endogenous production, and half-lives. RESULTS: Three to five liver segments were excised. Compared to healthy controls, the following results were observed in the patients: 1) normal endogenous glucose production; 2) unchanged 13C-lactate oxidation and transformation into glucose; 3) similar basal plasma lactate concentration, lactate clearance, and lactate endogenous production; 4) decreased plasma lactate half-life 1 and increased half-life 2. CONCLUSIONS: Glucose and lactate metabolism are well maintained in patients after major hepatectomy, demonstrating a large liver functional reserve. Reduction in the size of normal liver parenchyma does not lead to hyperlactatemia. The use of a pharmacokinetic model, however, allows the detection of subtle alterations of lactate metabolism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: The optimal hemoglobin (Hgb) target after aneurysmal subarachnoid hemorrhage is not precisely known. We sought to examine the threshold of Hgb concentration associated with an increased risk of cerebral metabolic dysfunction in patients with poor-grade subarachnoid hemorrhage. METHODS: Twenty consecutive patients with poor-grade subarachnoid hemorrhage who underwent multimodality neuromonitoring (intracranial pressure, brain tissue oxygen tension, cerebral microdialysis) were studied prospectively. Brain tissue oxygen tension and extracellular lactate/pyruvate ratio were used as markers of cerebral metabolic dysfunction and the relationship between Hgb concentrations and the incidence of brain hypoxia (defined by a brain tissue oxygen tension <20 mm Hg) and cell energy dysfunction (defined by a lactate/pyruvate ratio >40) was analyzed. RESULTS: Compared with higher Hgb concentrations, a Hgb concentration <9 g/dL was associated with lower brain tissue oxygen tension (27.2 [interquartile range, 21.2 to 33.1] versus 19.9 [interquartile range, 7.1 to 33.1] mm Hg, P=0.02), higher lactate/pyruvate ratio (29 [interquartile range, 25 to 38] versus 36 [interquartile range, 26 to 59], P=0.16), and an increased incidence of brain hypoxia (21% versus 52%, P<0.01) and cell energy dysfunction (23% versus 43%, P=0.03). On multivariable analysis, a Hgb concentration <9 g/dL was associated with a higher risk of brain hypoxia (OR, 7.92; 95% CI, 2.32 to 27.09; P<0.01) and cell energy dysfunction (OR, 4.24; 95% CI, 1.33 to 13.55; P=0.02) after adjusting for cerebral perfusion pressure, central venous pressure, PaO(2)/FIO(2) ratio, and symptomatic vasospasm. CONCLUSIONS: A Hgb concentration <9 g/dL is associated with an increased incidence of brain hypoxia and cell energy dysfunction in patients with poor-grade subarachnoid hemorrhage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Lactate is central for the regulation of brain metabolism and is an alternative substrate to glucose after injury. Brain lactate metabolism in patients with subarachnoid hemorrhage has not been fully elucidated. METHODS: Thirty-one subarachnoid hemorrhage patients monitored with cerebral microdialysis (CMD) and brain oxygen (PbtO(2)) were studied. Samples with elevated CMD lactate (>4 mmol/L) were matched to PbtO(2) and CMD pyruvate and categorized as hypoxic (PbtO(2) <20 mm Hg) versus nonhypoxic and hyperglycolytic (CMD pyruvate >119 μmol/L) versus nonhyperglycolytic. RESULTS: Median per patient samples with elevated CMD lactate was 54% (interquartile range, 11%-80%). Lactate elevations were more often attributable to cerebral hyperglycolysis (78%; interquartile range, 5%-98%) than brain hypoxia (11%; interquartile range, 4%-75%). Mortality was associated with increased percentage of samples with elevated lactate and brain hypoxia (28% [interquartile range 9%-95%] in nonsurvivors versus 9% [interquartile range 3%-17%] in survivors; P=0.02) and lower percentage of elevated lactate and cerebral hyperglycolysis (13% [interquartile range, 1%-87%] versus 88% [interquartile range, 27%-99%]; P=0.07). Cerebral hyperglycolytic lactate production predicted good 6-month outcome (odds ratio for modified Rankin Scale score, 0-3 1.49; CI, 1.08-2.05; P=0.016), whereas increased lactate with brain hypoxia was associated with a reduced likelihood of good outcome (OR, 0.78; CI, 0.59-1.03; P=0.08). CONCLUSIONS: Brain lactate is frequently elevated in subarachnoid hemorrhage patients, predominantly because of hyperglycolysis rather than hypoxia. A pattern of increased cerebral hyperglycolytic lactate was associated with good long-term recovery. Our data suggest that lactate may be used as an aerobic substrate by the injured human brain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: It is known that exogenous lactate given as an i.v. energy infusion is able to counteract a neuroglycopenic state that developed during psychosocial stress. It is unknown, however, whether the brain under stressful conditions can induce a rise in plasma lactate to satisfy its increased needs during stress. Since lactate is i) an alternative cerebral energy substrate to glucose and ii) its plasmatic concentration is influenced by the sympathetic nervous system, the present study aimed at investigating whether plasma lactate concentrations increase with psychosocial stress in humans. METHODS: 30 healthy young men participated in two sessions (stress induced by the Trier Social Stress Test and a non-stress control session). Blood samples were frequently taken to assess plasma lactate concentrations and stress hormone profiles. RESULTS: Plasma lactate increased 47% during psychosocial stress (from 0.9 ± 0.05 to 1.4 ± 0.1 mmol/l; interaction time × stress intervention: F = 19.7, p < 0.001). This increase in lactate concentrations during stress was associated with an increase in epinephrine (R(2) = 0.221, p = 0.02) and ACTH concentrations (R(2) = 0.460, p < 0.001). CONCLUSION: Plasma lactate concentrations increase during acute psychosocial stress in humans. This finding suggests the existence of a demand mechanism that functions to allocate an additional source of energy from the body towards the brain, which we refer to as 'cerebral lactate demand'.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To compare the effects of sodium bicarbonate and lactate for continuous veno-venous hemodiafiltration (CVVHDF) in critically ill patients. DESIGN AND SETTINGS: Prospective crossed-over controlled trial in the surgical and medical ICUs of a university hospital. PATIENTS: Eight patients with multiple organ dysfunction syndrome (MODS) requiring CVVHDF. INTERVENTION: Each patient received the two buffers in a randomized sequence over two consecutive days. MEASUREMENTS AND RESULTS: The following variables were determined: acid-base parameters, lactate production and utilization ((13)C lactate infusion), glucose turnover (6,6(2)H(2)-glucose), gas exchange (indirect calorimetry). No side effect was observed during lactate administration. Baseline arterial acid-base variables were equal with the two buffers. Arterial lactate (2.9 versus 1.5 mmol/l), glycemia (+18%) and glucose turnover (+23%) were higher in the lactate period. Bicarbonate and glucose losses in CVVHDF were substantial, but not lactate elimination. Infusing (13)C lactate increased plasma lactate levels equally with the two buffers. Lactate clearance (7.8+/-0.8 vs 7.5+/-0.8 ml/kg per min in the bicarbonate and lactate periods) and endogenous production rates (14.0+/-2.6 vs 13.6+/-2.6 mmol/kg per min) were similar. (13)C lactate was used as a metabolic substrate, as shown by (13)CO(2) excretion. Glycemia and metabolic rate increased significantly and similarly during the two periods during lactate infusion. CONCLUSION: Lactate was rapidly cleared from the blood of critically ill patients without acute liver failure requiring CVVHDF, being transformed into glucose or oxidized. Lactate did not exert undesirable effects, except moderate hyperglycemia, and achieved comparable effects on acid-base balance to bicarbonate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The disturbances of the cholesterol synthesis and metabolism described in Alzheimer's disease (AD) may be both a consequence of the neurodegenerative process and a contributor to the pathogenesis. These putative relationships and their underlying mechanisms are not well understood. The aim of this study was to evaluate the relationship between the cerebral and extracerebral cholesterol synthesis and metabolism, and the AD pathology as reflected by CSF markers in humans. We evaluated the relationships between the plasma and the cerebrospinal fluid (CSF) concentrations of cholesterol, the cholesterol precursors lanosterol, lathosterol and desmosterol, and the cholesterol elimination products 24S-hydroxycholesterol and 27-hydroxycholesterol, and the CSF markers for AD pathology Aβ1-42 and p-tau181 in 86 subjects with normal cognition and in 107 AD patients. CSF desmosterol, cholesterol and 24S-hydroxycholesterol in the AD group, and CSF 24S-hydroxycholesterol in the control group correlated with the p-tau181 levels. Neither CSF nor plasma concentrations of the included compounds correlated with the CSF Aβ1-42 levels. In multivariate regression tests including age, gender, albumin ratio, number of the APOEε4 alleles, and diagnosis, p-tau181 levels independently predicted the CSF desmosterol, cholesterol and 24S-hydroxycholesterol concentrations. The associations remained significant for CSF cholesterol and 24S-hydroxycholesterol when analyses were separately performed in the AD group. The results suggest that alterations of CNS cholesterol de novo genesis and metabolism are related to neurodegeneration and in particular to the cerebral accumulation of phosphorylated tau.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The brain requires a constant and substantial energy supply to maintain its main functions. For decades, it was assumed that glucose was the major if not the only significant source of energy for neurons. This view was supported by the expression of specific facilitative glucose transporters on cerebral blood vessels, as well as neurons. Despite the fact that glucose remains a key energetic substrate for the brain, growing evidence suggests a different scenario. Thus astrocytes, a major type of glial cells that express their own glucose transporter, play a critical role in coupling synaptic activity with glucose utilization. It was shown that glutamatergic activity triggers an enhancement of aerobic glycolysis in this cell type. As a result, lactate is provided to neurons as an additional energy substrate. Indeed, lactate has proven to be a preferential energy substrate for neurons under various conditions. A family of proton-linked carriers known as monocarboxylate transporters has been described and specific members have been found to be expressed by endothelial cells, astrocytes and neurons. Moreover, these transporters are subject to fine regulation of their expression levels and localization, notably in neurons, which suggests that lactate supply could be adjusted as a function of their level of activity. Considering the importance of energetics in the aetiology of several neurodegenerative diseases, a better understanding of its cellular and molecular underpinnings might have important implications for the future development of neuroprotective strategies.