954 resultados para CELL-DIVISION
Resumo:
Higher plants synthesize 24-methyl sterols and 24-ethyl sterols in defined proportions. As a first step in investigating the physiological function of this balance, an Arabidopsis cDNA encoding an S-adenosyl-l-methionine 24-methylene lophenol-C241-methyltransferase, the typical plant enzyme responsible for the production of 24-ethyl sterols, was expressed in tobacco (Nicotiana tabacum L.) under the control of a constitutive promoter. Transgenic plants displayed a novel 24-alkyl-Δ5-sterol profile: the ratio of 24-methyl cholesterol to sitosterol, which is close to 1 in the wild type, decreased dramatically to values ranging from 0.01 to 0.31. In succeeding generations of transgenic tobacco, a high S-adenosyl-l-methionine 24-methylene lophenol-C241-methyltransferase enzyme activity and, consequently, a low ratio of 24-methyl cholesterol to sitosterol, was associated with reduced growth compared with the wild type. However, this new morphological phenotype appeared only below the threshold ratio of 24-methyl cholesterol to sitosterol of approximately 0.1. Because the size of cells was unchanged in small, transgenic plants, we hypothesize that a radical decrease of 24-methyl cholesterol and/or a concomitant increase of sitosterol would be responsible for a change in cell division through as-yet unknown mechanisms.
Resumo:
The effects of ultraviolet-B (UV-B) radiation on water relations, leaf development, and gas-exchange characteristics in pea (Pisum sativum L. cv Meteor) plants subjected to drought were investigated. Plants grown throughout their development under a high irradiance of UV-B radiation (0.63 W m−2) were compared with those grown without UV-B radiation, and after 12 d one-half of the plants were subjected to 24 d of drought that resulted in mild water stress. UV-B radiation resulted in a decrease of adaxial stomatal conductance by approximately 65%, increasing stomatal limitation of CO2 uptake by 10 to 15%. However, there was no loss of mesophyll light-saturated photosynthetic activity. Growth in UV-B radiation resulted in large reductions of leaf area and plant biomass, which were associated with a decline in leaf cell numbers and cell division. UV-B radiation also inhibited epidermal cell expansion of the exposed surface of leaves. There was an interaction between UV-B radiation and drought treatments: UV-B radiation both delayed and reduced the severity of drought stress through reductions in plant water-loss rates, stomatal conductance, and leaf area.
Resumo:
Abscission explants of bean (Phaseolus vulgaris L.) were treated with ethylene to induce cell separation at the primary abscission zone. After several days of further incubation of the remaining petiole in endogenously produced ethylene, the distal two-thirds of the petiole became senescent, and the remaining (proximal) portion stayed green. Cell-to-cell separation (secondary abscission) takes place precisely at the interface between the senescing yellow and the enlarging green cells. The expression of the abscission-associated isoform of β-1,4-glucanhydrolase, the activation of the Golgi apparatus, and enhanced vesicle formation occurred only in the enlarging cortical cells on the green side. These changes were indistinguishable from those that occur in normal abscission cells and confirm the conversion of the cortical cells to abscission-type cells. Secondary abscission cells were also induced by applying auxin to the exposed primary abscission surface after the pulvinus was shed, provided ethylene was added. Then, the orientation of development of green and yellow tissue was reversed; the distal tissue remained green and the proximal tissue yellowed. Nevertheless, separation still occurred at the junction between green and yellow cells and, again, it was one to two cell layers of the green side that enlarged and separated from their senescing neighbors. Evaluation of Feulgen-stained tissue establishes that, although nuclear changes occur, the conversion of the cortical cell to an abscission zone cell is a true transdifferentiation event, occurring in the absence of cell division.
Resumo:
Reactive oxygen species cause damage to all of the major cellular constituents, including peroxidation of lipids. Previous studies have revealed that oxidative stress, including exposure to oxidation products, affects the progression of cells through the cell division cycle. This study examined the effect of linoleic acid hydroperoxide, a lipid peroxidation product, on the yeast cell cycle. Treatment with this peroxide led to accumulation of unbudded cells in asynchronous populations, together with a budding and replication delay in synchronous ones. This observed modulation of G1 progression could be distinguished from the lethal effects of the treatment and may have been due to a checkpoint mechanism, analogous to that known to be involved in effecting cell cycle arrest in response to DNA damage. By examining several mutants sensitive to linoleic acid hydroperoxide, the YNL099c open reading frame was found to be required for the arrest. This gene (designated OCA1) encodes a putative protein tyrosine phosphatase of previously unknown function. Cells lacking OCA1 did not accumulate in G1 on treatment with linoleic acid hydroperoxide, nor did they show a budding, replication, or Start delay in synchronous cultures. Although not essential for adaptation or immediate cellular survival, OCA1 was required for growth in the presence of linoleic acid hydroperoxide, thus indicating that it may function in linking growth, stress responses, and the cell cycle. Identification of OCA1 establishes cell cycle arrest as an actively regulated response to oxidative stress and will enable further elucidation of oxidative stress-responsive signaling pathways in yeast.
Resumo:
Crossing over by homologous recombination between monomeric circular chromosomes generates dimeric circular chromosomes that cannot be segregated to daughter cells during cell division. In Escherichia coli, homologous recombination is biased so that most homologous recombination events generate noncrossover monomeric circular chromosomes. This bias is lost in ruv mutants. A novel protein, RarA, which is highly conserved in eubacteria and eukaryotes and is related to the RuvB and the DnaX proteins, γ and τ, may influence the formation of crossover recombinants. Those dimeric chromosomes that do form are converted to monomers by Xer site-specific recombination at the recombination site dif, located in the replication terminus region of the E. coli chromosome. The septum-located FtsK protein, which coordinates cell division with chromosome segregation, is required for a complete Xer recombination reaction at dif. Only correctly positioned dif sites present in a chromosomal dimer are able to access septum-located FtsK. FtsK acts by facilitating a conformational change in the Xer recombination Holliday junction intermediate formed by XerC recombinase. This change provides a substrate for XerD, which then completes the recombination reaction.
Resumo:
We have cloned a fusion partner of the MLL gene at 11q23 and identified it as the gene encoding the human formin-binding protein 17, FBP17. It maps to chromosome 9q34 centromeric to ABL. The gene fusion results from a complex chromosome rearrangement that was resolved by fluorescence in situ hybridization with various probes on chromosomes 9 and 11 as an ins(11;9)(q23;q34)inv(11)(q13q23). The rearrangement resulted in a 5′-MLL/FBP17-3′ fusion mRNA. We retrovirally transduced murine-myeloid progenitor cells with MLL/FBP17 to test its transforming ability. In contrast to MLL/ENL, MLL/ELL and other MLL-fusion genes, MLL/FBP17 did not give a positive readout in a serial replating assay. Therefore, we assume that additional cooperating genetic abnormalities might be needed to establish a full malignant phenotype. FBP17 consists of a C-terminal Src homology 3 domain and an N-terminal region that is homologous to the cell division cycle protein, cdc15, a regulator of the actin cytoskeleton in Schizosaccharomyces pombe. Both domains are separated by a consensus Rho-binding motif that has been identified in different Rho-interaction partners such as Rhotekin and Rhophilin. We evaluated whether FBP17 and members of the Rho family interact in vivo with a yeast two-hybrid assay. None of the various Rho proteins tested, however, interacted with FBP17. We screened a human kidney library and identified a sorting nexin, SNX2, as a protein interaction partner of FBP17. These data provide a link between the epidermal growth factor receptor pathway and an MLL fusion protein.
Resumo:
SJL mice spontaneously develop pre-B-cell lymphoma that we hypothesized might stimulate macrophages to produce nitric oxide (NO.). Transplantation of an aggressive lymphoma (RcsX) was used to induce tumor formation. Urinary nitrate excretion was measured as an index of NO. production and was found to increase 50-fold by 13 days after tumor injection. NO. production was prevented by the addition of a nitric oxide synthase (NOS) inhibitor. The expression of inducible NOS (iNOS) in various tissues was estimated by Western blot analysis and localized by immunohistochemistry. The synthase was detected in the spleen, lymph nodes, and liver of treated but not control mice. To assess whether the iNOS-staining cells were macrophages, spleen sections from ResX-bearing animals were costained with anti-iNOS antibody and the anti-macrophage antibody moma-2. Expression of iNOS was found to be limited to a subset of the macrophage population. The concentration of gamma-interferon, a cytokine known to induce NO. production by macrophages, in the serum of tumor-bearing mice, was measured and found to be elevated 25-fold above untreated mice. The ability of ResX-activated macrophages to inhibit splenocyte growth in primary culture was estimated and macrophage-derived NO. was found to inhibit cell division 10-fold. Our findings demonstrate that ResX cells stimulate NO. production by macrophages in the spleen and lymph nodes of SJL mice, and we believe this experimental model will prove useful for study of the toxicological effects of NO. under physiological conditions.
Resumo:
The Schizosaccharomyces pombe mutant, ban5-4, displays aberrant mitochondrial distribution. Incubation of this conditional-lethal mutant at the nonpermissive temperature led to aggregated mitochondria that were distributed asymmetrically within the cell. Development of this mitochondrial asymmetry but not mitochondrial aggregation required progression through the cell division cycle. Genetic analysis revealed that ban5-4 is an allele of atb2 encoding alpha 2-tubulin. Consistent with this finding, cells with the cold-sensitive nda3 mutation in beta-tubulin displayed aggregated and asymmetrically distributed mitochondria after incubation at lowered temperatures. These results indicate that microtubules mediate mitochondrial distribution in fission yeast and provide the first genetic evidence for the role of microtubules in mitochondrial movement.
Resumo:
Precursor cells found in the subventricular zone (SVZ) of the adult brain can undergo cell division and migrate long distances before differentiating into mature neurons. We have investigated the possibility of introducing genes stably into this population of cells. Replication-defective adenoviruses were injected into the SVZ of the lateral ventricle of adult mice. The adenoviruses carried a cDNA for the LacZ reporter or the human p75 neurotrophin receptor, for which species-specific antibodies are available. Injection of the viruses into the SVZ led to efficient labeling of neuronal precursors. Two months after viral injection, infected cells were detected in the olfactory bulb, a significant distance from the site of injection. Labeled periglomerular and granular neurons with extensive dendritic arborization were found in the olfactory bulb. These results demonstrate that foreign genes can be efficiently introduced into neuronal precursor cells. Furthermore, adenovirus-directed infection can lead to long-term stable gene expression in progenitor cells found in the adult central nervous system.
Resumo:
In yeast, commitment to cell division (Start) is catalyzed by activation of the Cdc28 protein kinase in late G1 phase by the Cln1, Cln2, and Cln3 G1 cyclins. The Clns are essential, rate-limiting activators of Start because cells lacking Cln function (referred to as cln-) arrest at Start and because CLN dosage modulates the timing of Start. At or shortly after Start, the development of B-type cyclin Clb-Cdc28 kinase activity and initiation of DNA replication requires the destruction of p40SIC1, a specific inhibitor of the Clb-Cdc28 kinases. I report here that cln cells are rendered viable by deletion of SIC1. Conversely, in cln1 cln2 cells, which have low CLN activity, modest increases in SIC1 gene dosage cause inviability. Deletion of SIC1 does not cause a general bypass of Start since (cln-)sic1 cells remain sensitive to mating pheromone-induced arrest. Far1, a pheromone-activated inhibitor of Cln-Cdc28 kinases, is dispensable for arrest of (cln-)sic1 cells by pheromone, implying the existence of an alternate Far1-independent arrest pathway. These observations define a pheromone-sensitive activity able to catalyze Start only in the absence of p40SIC1. The existence of this activity means that the B-type cyclin inhibitor p40SIC1 imposes the requirement for Cln function at Start.
Resumo:
Human CAS cDNA contains a 971-aa open reading frame that is homologous to the essential yeast gene CSE1. CSE1 is involved in chromosome segregation and is necessary for B-type cyclin degradation in mitosis. Using antibodies to CAS, it was shown that CAS levels are high in proliferating and low in nonproliferating cells. Here we describe the distribution of CAS in cells and tissues analyzed with antibodies against CAS. CAS is an approximately 100-kDa protein present in the cytoplasm of proliferating cells at levels between 2 x 10(5) and 1 x 10(6) molecules per cell. The intracellular distribution of CAS resembles that of tubulin. In interphase cells, anti-CAS antibody shows microtubule-like patterns and in mitotic cells it labels the mitotic spindle. CAS is removed from microtubules by mild detergent treatment (cytoskeleton preparations) and in vincristine- or taxol-treated cells. CAS is diffusely distributed in the cytoplasm with only traces present in tubulin paracrystals or bundles. Thus, CAS appears to be associated with but not to be an integral part of microtubules. Immunohistochemical staining of frozen tissues shows elevated amounts of CAS in proliferating cells such as testicular spermatogonia and cells in the basal layer cells of the colon. CAS was also concentrated in the respiratory epithelium of the trachea and in axons and Purkinje cells in the cerebellum. These cells contain many microtubules. The cellular location of CAS is consistent with an important role in cell division as well as in ciliary movement and vesicular transport.
Resumo:
During Drosophila development, nuclear and cell divisions are coordinated in response to developmental signals. In yeast and mammalian cells, signals that control cell division regulate the activity of cyclin-dependent kinases (Cdks) through proteins such as cyclins that interact with the Cdks. Here we describe two Drosophila cyclins identified from a set of Cdk-interacting proteins. One, cyclin J, is of a distinctive sequence type; its exclusive maternal expression pattern suggests that it may regulate oogenesis or the early nuclear divisions of embryogenesis. The other belongs to the D class of cyclins, previously identified in mammalian cells. We show that Drosophila cyclin D is expressed in early embryos and in imaginal disc cells in a pattern that anticipates cell divisions. Expression in the developing eye disc at the anterior edge of the morphogenetic furrow suggests that cyclin D acts early, prior to cyclin E, in inducing G1-arrested cells to enter S phase. Our results also suggest that, although cyclin D may be necessary, its expression alone is not sufficient to initiate the events leading to S phase.
Resumo:
Proper chromosome segregation in eukaryotes depends upon the mitotic and meiotic spindles, which assemble at the time of cell division and then disassemble upon its completion. These spindles are composed in large part of microtubules, which either generate force by controlled polymerization and depolymerization or transduce force generated by molecular microtubule motors. In this review, we discuss recent insights into chromosome segregation mechanisms gained from the analyses of force generation during meiosis and mitosis. These analyses have demonstrated that members of the kinesin superfamily and the dynein family are essential in all organisms for proper chromosome and spindle behavior. It is also apparent that forces generated by microtubule polymerization and depolymerization are capable of generating forces sufficient for chromosome movement in vitro; whether they do so in vivo is as yet unclear. An important realization that has emerged is that some spindle activities can be accomplished by more than one motor so that functional redundancy is evident. In addition, some meiotic or mitotic movements apparently occur through the cooperative action of independent semiredundant processes. Finally, the molecular characterization of kinesin-related proteins has revealed that variations both in primary sequence and in associations with other proteins can produce motor complexes that may use a variety of mechanisms to transduce force in association with microtubules. Much remains to be learned about the regulation of these activities and the coordination of opposing and cooperative events involved in chromosome segregation; this set of problems represents one of the most important future frontiers of research.
Resumo:
The biological function of the retinoblastoma protein (RB) in the cell division cycle has been extensively documented, but its apparent role in differentiation remains largely unexplored. To investigate how RB is involved in differentiation, the U937 large-cell lymphoma line was induced to differentiate along a monocyte/macrophage lineage. During differentiation RB was found to interact directly through its simian virus 40 large tumor antigen (T antigen)-binding domain with NF-IL6, a member of the CAAT/enhancer-binding protein (C/EBP) family of transcription factors. NF-IL6 utilizes two distinct regions to bind to the hypophosphorylated form of RB in vitro and in cells. Wild-type but not mutant RB enhanced both binding activity of NF-IL6 to its cognate DNA sequences in vitro and promoter transactivation by NF-IL6 in cells. These findings indicate a novel biochemical function of RB: it activates, by an apparent chaperone-like activity, specific transcription factors important for differentiation. This contrasts with its sequestration and inactivation of other transcription factors, such as E2F-1, which promote progression of the cell cycle. Such disparate mechanisms may help to explain the dual role of RB in cell differentiation and the cell division cycle.
Resumo:
The present study has assessed the replicative history and the residual replicative potential of human naive and memory T cells. Telomeres are unique terminal chromosomal structures whose length has been shown to decrease with cell division in vitro and with increased age in vivo for human somatic cells. We therefore assessed telomere length as a measure of the in vivo replicative history of naive and memory human T cells. Telomeric terminal restriction fragments were found to be 1.4 +/- 0.1 kb longer in CD4+ naive T cells than in memory cells from the same donors, a relationship that remained constant over a wide range of donor age. These findings suggest that the differentiation of memory cells from naive precursors occurs with substantial clonal expansion and that the magnitude of this expansion is, on average, similar over a wide range of age. In addition, when replicative potential was assessed in vitro, it was found that the capacity of naive cells for cell division was 128-fold greater as measured in mean population doublings than the capacity of memory cells from the same individuals. Human CD4+ naive and memory cells thus differ in in vivo replicative history, as reflected in telomeric length, and in their residual replicative capacity.