820 resultados para CASE SERIES
Resumo:
[EN] The information provided by the International Commission for the Conservation of Atlantic Tunas (ICCAT) on captures of skipjack tuna (Katsuwonus pelamis) in the central-east Atlantic has a number of limitations, such as gaps in the statistics for certain fleets and the level of spatiotemporal detail at which catches are reported. As a result, the quality of these data and their effectiveness for providing management advice is limited. In order to reconstruct missing spatiotemporal data of catches, the present study uses Data INterpolating Empirical Orthogonal Functions (DINEOF), a technique for missing data reconstruction, applied here for the first time to fisheries data. DINEOF is based on an Empirical Orthogonal Functions decomposition performed with a Lanczos method. DINEOF was tested with different amounts of missing data, intentionally removing values from 3.4% to 95.2% of data loss, and then compared with the same data set with no missing data. These validation analyses show that DINEOF is a reliable methodological approach of data reconstruction for the purposes of fishery management advice, even when the amount of missing data is very high.
Resumo:
Although Recovery is often defined as the less studied and documented phase of the Emergency Management Cycle, a wide literature is available for describing characteristics and sub-phases of this process. Previous works do not allow to gain an overall perspective because of a lack of systematic consistent monitoring of recovery utilizing advanced technologies such as remote sensing and GIS technologies. Taking into consideration the key role of Remote Sensing in Response and Damage Assessment, this thesis is aimed to verify the appropriateness of such advanced monitoring techniques to detect recovery advancements over time, with close attention to the main characteristics of the study event: Hurricane Katrina storm surge. Based on multi-source, multi-sensor and multi-temporal data, the post-Katrina recovery was analysed using both a qualitative and a quantitative approach. The first phase was dedicated to the investigation of the relation between urban types, damage and recovery state, referring to geographical and technological parameters. Damage and recovery scales were proposed to review critical observations on remarkable surge- induced effects on various typologies of structures, analyzed at a per-building level. This wide-ranging investigation allowed a new understanding of the distinctive features of the recovery process. A quantitative analysis was employed to develop methodological procedures suited to recognize and monitor distribution, timing and characteristics of recovery activities in the study area. Promising results, gained by applying supervised classification algorithms to detect localization and distribution of blue tarp, have proved that this methodology may help the analyst in the detection and monitoring of recovery activities in areas that have been affected by medium damage. The study found that Mahalanobis Distance was the classifier which provided the most accurate results, in localising blue roofs with 93.7% of blue roof classified correctly and a producer accuracy of 70%. It was seen to be the classifier least sensitive to spectral signature alteration. The application of the dissimilarity textural classification to satellite imagery has demonstrated the suitability of this technique for the detection of debris distribution and for the monitoring of demolition and reconstruction activities in the study area. Linking these geographically extensive techniques with expert per-building interpretation of advanced-technology ground surveys provides a multi-faceted view of the physical recovery process. Remote sensing and GIS technologies combined to advanced ground survey approach provides extremely valuable capability in Recovery activities monitoring and may constitute a technical basis to lead aid organization and local government in the Recovery management.
Resumo:
Different tools have been used to set up and adopt the model for the fulfillment of the objective of this research. 1. The Model The base model that has been used is the Analytical Hierarchy Process (AHP) adapted with the aim to perform a Benefit Cost Analysis. The AHP developed by Thomas Saaty is a multicriteria decision - making technique which decomposes a complex problem into a hierarchy. It is used to derive ratio scales from both discreet and continuous paired comparisons in multilevel hierarchic structures. These comparisons may be taken from actual measurements or from a fundamental scale that reflects the relative strength of preferences and feelings. 2. Tools and methods 2.1. The Expert Choice Software The software Expert Choice is a tool that allows each operator to easily implement the AHP model in every stage of the problem. 2.2. Personal Interviews to the farms For this research, the farms of the region Emilia Romagna certified EMAS have been detected. Information has been given by EMAS center in Wien. Personal interviews have been carried out to each farm in order to have a complete and realistic judgment of each criteria of the hierarchy. 2.3. Questionnaire A supporting questionnaire has also been delivered and used for the interviews . 3. Elaboration of the data After data collection, the data elaboration has taken place. The software support Expert Choice has been used . 4. Results of the Analysis The result of the figures above (vedere altro documento) gives a series of numbers which are fractions of the unit. This has to be interpreted as the relative contribution of each element to the fulfillment of the relative objective. So calculating the Benefits/costs ratio for each alternative the following will be obtained: Alternative One: Implement EMAS Benefits ratio: 0, 877 Costs ratio: 0, 815 Benfit/Cost ratio: 0,877/0,815=1,08 Alternative Two: Not Implement EMAS Benefits ratio: 0,123 Costs ration: 0,185 Benefit/Cost ratio: 0,123/0,185=0,66 As stated above, the alternative with the highest ratio will be the best solution for the organization. This means that the research carried out and the model implemented suggests that EMAS adoption in the agricultural sector is the best alternative. It has to be noted that the ratio is 1,08 which is a relatively low positive value. This shows the fragility of this conclusion and suggests a careful exam of the benefits and costs for each farm before adopting the scheme. On the other part, the result needs to be taken in consideration by the policy makers in order to enhance their intervention regarding the scheme adoption on the agricultural sector. According to the AHP elaboration of judgments we have the following main considerations on Benefits: - Legal compliance seems to be the most important benefit for the agricultural sector since its rank is 0,471 - The next two most important benefits are Improved internal organization (ranking 0,230) followed by Competitive advantage (ranking 0, 221) mostly due to the sub-element Improved image (ranking 0,743) Finally, even though Incentives are not ranked among the most important elements, the financial ones seem to have been decisive on the decision making process. According to the AHP elaboration of judgments we have the following main considerations on Costs: - External costs seem to be largely more important than the internal ones (ranking 0, 857 over 0,143) suggesting that Emas costs over consultancy and verification remain the biggest obstacle. - The implementation of the EMS is the most challenging element regarding the internal costs (ranking 0,750).
Resumo:
In the present work we perform an econometric analysis of the Tribal art market. To this aim, we use a unique and original database that includes information on Tribal art market auctions worldwide from 1998 to 2011. In Literature, art prices are modelled through the hedonic regression model, a classic fixed-effect model. The main drawback of the hedonic approach is the large number of parameters, since, in general, art data include many categorical variables. In this work, we propose a multilevel model for the analysis of Tribal art prices that takes into account the influence of time on artwork prices. In fact, it is natural to assume that time exerts an influence over the price dynamics in various ways. Nevertheless, since the set of objects change at every auction date, we do not have repeated measurements of the same items over time. Hence, the dataset does not constitute a proper panel; rather, it has a two-level structure in that items, level-1 units, are grouped in time points, level-2 units. The main theoretical contribution is the extension of classical multilevel models to cope with the case described above. In particular, we introduce a model with time dependent random effects at the second level. We propose a novel specification of the model, derive the maximum likelihood estimators and implement them through the E-M algorithm. We test the finite sample properties of the estimators and the validity of the own-written R-code by means of a simulation study. Finally, we show that the new model improves considerably the fit of the Tribal art data with respect to both the hedonic regression model and the classic multilevel model.
Resumo:
The main objective of this thesis is to explore the short and long run causality patterns in the finance – growth nexus and finance-growth-trade nexus before and after the global financial crisis, in the case of Albania. To this end we use quarterly data on real GDP, 13 proxy measures for financial development and the trade openness indicator for the period 1998Q1 – 2013Q2 and 1998Q1-2008Q3. Causality patterns will be explored in a VAR-VECM framework. For this purpose we will proceed as follows: (i) testing for the integration order of the variables; (ii) cointegration analysis and (iii) performing Granger causality tests in a VAR-VECM framework. In the finance-growth nexus, empirical evidence suggests for a positive long run relationship between finance and economic growth, with causality running from financial development to economic growth. The global financial crisis seems to have not affected the causality direction in the finance and growth nexus, thus supporting the finance led growth hypothesis in the long run in the case of Albania. In the finance-growth-trade openness nexus, we found evidence for a positive long run relationship the variables, with causality direction depending on the proxy used for financial development. When the pre-crisis sample is considered, we find evidence for causality running from financial development and trade openness to economic growth. The global financial crisis seems to have affected somewhat the causality direction in the finance-growth-trade nexus, which has become sensible to the proxy used for financial development. On the short run, empirical evidence suggests for a clear unidirectional relationship between finance and growth, with causality mostly running from economic growth to financial development. When we consider the per-crisis sub sample results are mixed, depending on the proxy used for financial development. The same results are confirmed when trade openness is taken into account.
Resumo:
Globalization has influenced all economic sectors and the demand for translation services has increased like never before. The videogame industry has become a worldwide phenomenon worth billions. Many people around the globe, male and female, children and adults alike, choose this leisure activity and enjoy it like reading or watching a film. It is a global phenomenon capable of producing as much revenue and anticipation as the film industry. Most games are developed in Japanese or English and the new global market requires this product to be translated into many other languages. The scenario has brought about a new field of specialization in translation studies, commonly known as videogame localization. The emergence of this new field calls not only for a review of translation studies, but also a shift in the role that some translators and translated products are expected to play within a globalized world. The aim of this dissertation is to provide an overview of videogame localization and its challenges under the guidance of a professional translator such as Alexander O. Smith, who agreed to provide counsel through several Skype interviews. This provided a first-hand insight into how translation decisions are carried out by game translators. Alexander O. Smith was a former translator for Square Enix, one of the biggest Japanese videogame developer, publisher and distribution company in the market. He now works as an independent translator and in 2003 he founded the localization agency called Kajiya Productions with his friend and fellow translator Joseph Reeder. Together with Alexander O. Smith, the twelfth installment of the Final Fantasy series by Square Enix has been chosen as a very good example of the issues and challenges brought on by videogame localization. The game which revealed itself to be one of the most fun, challenging and rewarding professional experiences of Alexander O. Smith.
Resumo:
In a large series of nonselected autopsy investigations an accessory spleen was found in 10-30%. The second most common site is the pancreatic tail (17%). We report a case of intrapancreatic accessory spleen misdiagnosed as a nonsecreting neuroendocrine tumor of the pancreas. Nuclear scintigraphy may provide the definitive diagnosis of an intrapancreatic spleen and therefore prevent patients from unnecessary major surgery.
Resumo:
Investigators interested in whether a disease aggregates in families often collect case-control family data, which consist of disease status and covariate information for families selected via case or control probands. Here, we focus on the use of case-control family data to investigate the relative contributions to the disease of additive genetic effects (A), shared family environment (C), and unique environment (E). To this end, we describe a ACE model for binary family data and then introduce an approach to fitting the model to case-control family data. The structural equation model, which has been described previously, combines a general-family extension of the classic ACE twin model with a (possibly covariate-specific) liability-threshold model for binary outcomes. Our likelihood-based approach to fitting involves conditioning on the proband’s disease status, as well as setting prevalence equal to a pre-specified value that can be estimated from the data themselves if necessary. Simulation experiments suggest that our approach to fitting yields approximately unbiased estimates of the A, C, and E variance components, provided that certain commonly-made assumptions hold. These assumptions include: the usual assumptions for the classic ACE and liability-threshold models; assumptions about shared family environment for relative pairs; and assumptions about the case-control family sampling, including single ascertainment. When our approach is used to fit the ACE model to Austrian case-control family data on depression, the resulting estimate of heritability is very similar to those from previous analyses of twin data.
Resumo:
BACKGROUND: Endovascular therapy is a rapidly expanding option for the treatment of patients with peripheral arterial disease (PAD), leading to a myriad of published studies reporting on various revascularization strategies. However, these reports are often difficult to interpret and compare because they do not utilize uniform clinical endpoint definitions. Moreover, few of these studies describe clinical outcomes from a patients' perspective. METHODS AND RESULTS: The DEFINE Group is a collaborative effort of an ad-hoc multidisciplinary team from various specialties involved in peripheral arterial disease therapy in Europe and the United States. DEFINE's goal was to arrive at a broad based consensus for baseline and endpoint definitions in peripheral endovascular revascularization trials for chronic lower limb ischemia. In this project, which started in 2006, the individual team members reviewed the existing pertinent literature. Following this, a series of telephone conferences and face-to-face meetings were held to agree upon definitions. Input was also obtained from regulatory (United States Food and Drug Administration) and industry (device manufacturers with an interest in peripheral endovascular revascularization) stakeholders, respectively. The efforts resulted in the current document containing proposed baseline and endpoint definitions in chronic lower limb PAD. Although the consensus has inevitably included certain arbitrary choices and compromises, adherence to these proposed standard definitions would provide consistency across future trials, thereby facilitating evaluation of clinical effectiveness and safety of various endovascular revascularization techniques. CONCLUSION: This current document is based on a broad based consensus involving relevant stakeholders from the medical community, industry and regulatory bodies. It is proposed that the consensus document may have value for study design of future clinical trials in chronic lower limb ischemia as well as for regulatory purposes.
Resumo:
Presentation by Dr. Stephen Ditchkoff.
Resumo:
Despite widespread use of species-area relationships (SARs), dispute remains over the most representative SAR model. Using data of small-scale SARs of Estonian dry grassland communities, we address three questions: (1) Which model describes these SARs best when known artifacts are excluded? (2) How do deviating sampling procedures (marginal instead of central position of the smaller plots in relation to the largest plot; single values instead of average values; randomly located subplots instead of nested subplots) influence the properties of the SARs? (3) Are those effects likely to bias the selection of the best model? Our general dataset consisted of 16 series of nested-plots (1 cm(2)-100 m(2), any-part system), each of which comprised five series of subplots located in the four corners and the centre of the 100-m(2) plot. Data for the three pairs of compared sampling designs were generated from this dataset by subsampling. Five function types (power, quadratic power, logarithmic, Michaelis-Menten, Lomolino) were fitted with non-linear regression. In some of the communities, we found extremely high species densities (including bryophytes and lichens), namely up to eight species in 1 cm(2) and up to 140 species in 100 m(2), which appear to be the highest documented values on these scales. For SARs constructed from nested-plot average-value data, the regular power function generally was the best model, closely followed by the quadratic power function, while the logarithmic and Michaelis-Menten functions performed poorly throughout. However, the relative fit of the latter two models increased significantly relative to the respective best model when the single-value or random-sampling method was applied, however, the power function normally remained far superior. These results confirm the hypothesis that both single-value and random-sampling approaches cause artifacts by increasing stochasticity in the data, which can lead to the selection of inappropriate models.
Resumo:
Climate change affects increasingly the management of natural resources and has diverse impacts of environmental, social and economic nature. To take this complexity into account, climate change adaptation policies consider the principle of sustainable development. Sustainability is an integrative concept which should insure a long-term and multi-sectoral response to climate change. But the question appears if sustainable development is only retained at the conceptual level or effectively implemented in practice. This paper pursues this question by comparing three projects addressing natural hazard in Swiss mountains. The aim is to investigate how sustainable development is perceived by involved stakeholders and implemented in practice. Two dimensions are thus taken into account: the type of actors participating in these projects and their preferences and interests. The first dimension thus analyzes if diverse actors representing the environmental, economic and social arenas are integrated; the second dimension investigates if different interests and preferences in the sense of sustainability were incorporated in the design and implementation of climate change adaptation. Data were gathered through a standardized survey among all actors involved in the three projects. Preliminary results show that sustainability receives diverse weight and interest in the different cases.
Resumo:
Soil degradation is widespread in the Ethiopian Highlands. Its negative impacts on soil productivity contribute to the extreme poverty of the rural population. Soil conservation is propagated as a means of reducing soil erosion, however, it is a costly investment for small-scale farming households. The present study is an attempt to show whether or not selected mechanical Soil and Water Conservation (SWC) technologies are profitable from a farmer’s point of view. A financial Cost-Benefit Analysis (CBA) is carried out to assess whether or not the considered SWC technologies are profitable from a farmer’s point of view. The CBA is supplemented by an evaluation of aspects from the economic and institutional environment. Whether or not soil conservation is profitable from a farmer’s point of view depends on a broad range of factors from the ecological, economic, political, institutional and socio-cultural sphere and also depends on the technology and the prevailing farming system. Because these factors are closely interlinked, it is often not sufficient to change or influence one to make SWC profitable. Several recommendations are formulated with regard to improving the profitability of SWC investments from a farmer’s point of view. Because the reasons for unsustainable resource use are manifold and highly interlinked, only a multi-stakeholder, multi-level and multi-objective approach is likely to offer solutions that address the underlying problems adequately.