897 resultados para Bryant angles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this thesis was to quantify the physiological responses such as O2 uptake (VO2), heart rate (HR) and blood lactate ([LA]) to some types of activities associated with intermittent sports in athletes. Our hypothesis is that the introduction of accelerations and decelerations with or without directional changes results in a significative increase of the oxygen consumption, heart rate and blood lactate. The purpose of the first study was to measure and compare the VO2 and the HR of 6 on-court tennis drills at both high and low displacement speeds. These drills were done with and without striking the ball, over full and half-width court, in attack or in defense mode, using backhand or forehand strokes. Results show that playing an attacking style requires 6.5% more energy than playing a defensive style (p < 0.01) and the backhand stroke required 7% more VO2 at low speed than forehand stroke (p < 0.05) while the additional cost of striking the ball lies between 3.5 and 3.0 mL kg-1 min-1. Finally, while striking the ball, the energy expanded during a shuttle displacement on half-width court is 14% higher than running on full-width court. Studies #2 and #3 focused on different modes of displacement observed in irregular sports. The objective of the second study was to measure and compare VO2, HR and [LA] responses to randomly performed multiple fractioned runs with directional changes (SR) and without directional changes (FR) to those of in-line running (IR) at speeds corresponding to 60, 70 and 80% of the subject’s maximal aerobic speed (MAS). All results show that IR’s VO2 was significantly lower than SR’s and FR’s (p<0.05). SR’s VO2 was greater than FR’s only at speeds corresponding to 80%MAS. On the other hand, HR was similar in SR and FR but significantly higher than IR’s (p<0.05). [LA] varied between 4.2 ± 0.8 and 6.6 ± 0.9 mmol L-1 without significant differences between the 3 displacement modes. Finally, the third study’s objective was to measure and compare VO2 , HR and [LA] responses during directional changes at different angles and at different submaximal running speeds corresponding to 60, 70 and 80% MAS. Subjects randomly performed 4 running protocols 1) a 20-m shuttle running course (180°) (SR), 2) an 8-shaped running course with 90-degree turns every 20 m (90R), 3) a Zigzag running course (ZZR) with multiple close directional changes (~ 5 m) at different angle values of 91.8°, 90° and 38.6°, 4) an In-line run (IR) for comparison purposes. Results show that IR’s was lower (p<0.001) than for 90R’s, SR’s and ZZR’s at all intensities. VO2 obtained at 60 and 70%MAS was 48.7 and 38.1% higher during ZZR when compared to IR while and depending on the intensity, during 90R and SR was between 15.5 and 19.6% higher than during IR. Also, ZZR’s VO2 was 26.1 and 19.5% higher than 90R’s, 26.1 and 15.5% higher than SR’s at 60 and 70%MAS. SR’s and 90R’s VO2 were similar. Changing direction at a 90° angle and at 180° angle seem similar when compared to continuous in-line running. [LA] levels were similar in all modalities. Overall, the studies presented in this thesis allow the quantification of the specific energetic demands of certain types of displacement modes in comparison with conventional forward running. Also, our results confirm that the energy cost varies and increase with the introduction of accelerations and decelerations with and without directional changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse traite de deux thèmes principaux. Le premier concerne l'étude des empilements apolloniens généralisés de cercles et de sphères. Généralisations des classiques empilements apolloniens, dont l'étude remonte à la Grèce antique, ces objets s'imposent comme particulièrement attractifs en théorie des nombres. Dans cette thèse sera étudié l'ensemble des courbures (les inverses des rayons) des cercles ou sphères de tels empilements. Sous de bonnes conditions, ces courbures s'avèrent être toutes entières. Nous montrerons qu'elles vérifient un principe local-global partiel, nous compterons le nombre de cercles de courbures plus petites qu'une quantité donnée et nous nous intéresserons également à l'étude des courbures premières. Le second thème a trait à la distribution angulaire des idéaux (ou plutôt ici des nombres idéaux) des corps de nombres quadratiques imaginaires (que l'on peut voir comme la distribution des points à coordonnées entières sur des ellipses). Nous montrerons que la discrépance de l'ensemble des angles des nombres idéaux entiers de norme donnée est faible et nous nous intéresserons également au problème des écarts bornés entre les premiers d'extensions quadratiques imaginaires dans des secteurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. Clinicians commonly assess posture in persons with musculoskeletal disorders and tend to do so subjectively. Evidence-based practice requires the use of valid, reliable and sensitive tools to monitor treatment effectiveness. The purpose of this article was to determine which methods were used to assess posture quantitatively in a clinical setting and to identify psychometric properties of posture indices measured from these methods or tools. Methods. We conducted a comprehensive literature review. Pertinent databases were used to search for articles on quantitative clinical assessment of posture. Searching keywords were related to posture and assessment, scoliosis, back pain, reliability, validity and different body segments. Results. We identified 65 articles with angle and distance posture indices that corresponded to our search criteria. Several studies showed good intra- and inter-rater reliability for measurements taken directly on the persons (e.g., goniometer, inclinometer, flexible curve and tape measurement) or from photographs, but the validity of these measurements was not always demonstrated. Conclusion. Taking measurements of all body angles directly on the person is a lengthy process and may affect the reliability of the measurements. Measurement of body angles from photographs may be the most accurate and rapid way to assess global posture quantitatively in a clinical setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To determine overall, test–retest and inter-rater reliability of posture indices among persons with idiopathic scoliosis. Design A reliability study using two raters and two test sessions. Setting Tertiary care paediatric centre. Participants Seventy participants aged between 10 and 20 years with different types of idiopathic scoliosis (Cobb angle 15 to 60°) were recruited from the scoliosis clinic. Main outcome measures Based on the XY co-ordinates of natural reference points (e.g. eyes) as well as markers placed on several anatomical landmarks, 32 angular and linear posture indices taken from digital photographs in the standing position were calculated from a specially developed software program. Generalisability theory served to estimate the reliability and standard error of measurement (SEM) for the overall, test–retest and inter-rater designs. Bland and Altman's method was also used to document agreement between sessions and raters. Results In the random design, dependability coefficients demonstrated a moderate level of reliability for six posture indices (ϕ = 0.51 to 0.72) and a good level of reliability for 26 posture indices out of 32 (ϕ ≥ 0.79). Error attributable to marker placement was negligible for most indices. Limits of agreement and SEM values were larger for shoulder protraction, trunk list, Q angle, cervical lordosis and scoliosis angles. The most reproducible indices were waist angles and knee valgus and varus. Conclusions Posture can be assessed in a global fashion from photographs in persons with idiopathic scoliosis. Despite the good reliability of marker placement, other studies are needed to minimise measurement errors in order to provide a suitable tool for monitoring change in posture over time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to explore whether differences in standing and sitting postures of youth with idiopathic scoliosis could be detected from quantitative analysis of digital photographs. Standing and sitting postures of 50 participants aged 10–20-years-old with idiopathic scoliosis (Cobb angle: 15° to 60°) were assessed from digital photographs using a posture evaluation software program. Based on the XY coordinates of markers, 13 angular and linear posture indices were calculated in both positions. Paired t-tests were used to compare values of standing and sitting posture indices. Significant differences between standing and sitting positions (p < 0.05) were found for head protraction, shoulder elevation, scapula asymmetry, trunk list, scoliosis angle, waist angles, and frontal and sagittal plane pelvic tilt. Quantitative analysis of digital photographs is a clinically feasible method to measure standing and sitting postures among youth with scoliosis and to assist in decisions on therapeutic interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

STUDY DESIGN: Concurrent validity between postural indices obtained from digital photographs (two-dimensional [2D]), surface topography imaging (three-dimensional [3D]), and radiographs. OBJECTIVE: To assess the validity of a quantitative clinical postural assessment tool of the trunk based on photographs (2D) as compared to a surface topography system (3D) as well as indices calculated from radiographs. SUMMARY OF BACKGROUND DATA: To monitor progression of scoliosis or change in posture over time in young persons with idiopathic scoliosis (IS), noninvasive and nonionizing methods are recommended. In a clinical setting, posture can be quite easily assessed by calculating key postural indices from photographs. METHODS: Quantitative postural indices of 70 subjects aged 10 to 20 years old with IS (Cobb angle, 15 degrees -60 degrees) were measured from photographs and from 3D trunk surface images taken in the standing position. Shoulder, scapula, trunk list, pelvis, scoliosis, and waist angles indices were calculated with specially designed software. Frontal and sagittal Cobb angles and trunk list were also calculated on radiographs. The Pearson correlation coefficients (r) was used to estimate concurrent validity of the 2D clinical postural tool of the trunk with indices extracted from the 3D system and with those obtained from radiographs. RESULTS: The correlation between 2D and 3D indices was good to excellent for shoulder, pelvis, trunk list, and thoracic scoliosis (0.81>r<0.97; P<0.01) but fair to moderate for thoracic kyphosis, lumbar lordosis, and thoracolumbar or lumbar scoliosis (0.30>r<0.56; P<0.05). The correlation between 2D and radiograph spinal indices was fair to good (-0.33 to -0.80 with Cobb angles and 0.76 for trunk list; P<0.05). CONCLUSION: This tool will facilitate clinical practice by monitoring trunk posture among persons with IS. Further, it may contribute to a reduction in the use of radiographs to monitor scoliosis progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two graphs G and H are Turker equivalent if they have the same set of Turker angles. In this paper some Turker equivalent family of graphs are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis presented here unveils an experimental study of the hydrodynamic characteristics of swirling fluidized bed viz. pressure drop across the distributor and the bed, minimum fluidizing velocity, bed behaviour and angle of air injection. In swirling fluidized bed the air is admitted to the bed at an angle 'Ѳ' to the horizontal. The vertical component of the velocity v sin Ѳ causes fluidization and the horizontal component v cos Ѳ contributes to swirl motion of the bed material.The study was conducted using spherical particles having sizes 3.2 mm, 5.5 mm & 7.4 mm as the bed materials. Each of these particles was made from high density polyethylene, nylon and acetal having relative densities of 0.93, 1.05 and 1.47 respectively.The experiments were conducted using conidour type distributors having four rows of slits. Altogether four distributors having angles of air injection (Φ)- 0°, 5°, 10° & 15° were designed and fabricated for the study. The total number of slits in each distributor was 144. The area of opening was 6220 mm2 making the percentage area of opening to 9.17. But the percentage useful area of opening of the distributor was 96.The experiments on the variation of distributor pressure drop with superficial velocity revealed that the distributor pressure drop decreases with angle of air injection. Investigations related to bed hydrodynamics were conducted using 2.5 kg of bed material. The bed pressure drop measurements were made along the radial direction of the distributor at distances of 60 mm, 90 mm, 120 mm & 150 mm from the centre of the distributor. It was noticed that after attaining minimum fluidizing velocity, the bed pressure drop increases along the radial direction of the distributor. But at a radial distance of 90 mm from the distributor centre, after attaining minimum fluidizing velocity the bed pressure drop remains almost constant. It was also observed that the bed pressure drop varies inversely with particle size as well as particle density.An attempt was made to determine the effect of various parameters on minimum fluidizing velocity. It was noticed that the minimum fluidizing velocity varies directly with angle of air injection (Φ), particle size and particle density.The study on the bed behaviour showed that the superficial velocity required for initiating various bed phenomena (such as swirl motion and separation of particles from the cone at the centre) increase with increase in particle size as well as particle density. It was also observed that the particle size and particle density directly influence the superficial velocity required for various regimes of bed behaviour such as linear variation of bed pressure drop, constant bed pressure drop and sudden increase or decrease in bed pressure drop.Experiments were also performed to study the effect of angle of air injection (Φ). It was noticed that the bed pressure drop decreases with angle of air injection. It was also noticed that the angle of air injection directly influence the superficial velocity required for initiating various bed phenomena as well as the various regimes of bed behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents the Radar Cross Section measurements of different geometric structures such as flat plate,cylinder, corner reflector and circular cone loaded with fractal based metallo dielectric structures.Use of different fractal geometris,metallizations of different shapes as well as the frequency tanability is investigated for TE and TM polarization of the incident electromagnetic field.Application of fractal based metallo-dielectric structures results in RCS reduction over a wide range of frequency bands.RCS enhancement of dihedral corner is observed at certain acute and obtuse corner angles.The experimental results are validated using electromagnetic simulation softwares.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scattering behaviour of fractal based metallodielectric structures loaded over metallic targets of different shapes such as flat plate, cylinder and dihedral corner reflector are investigated for both TE and TM polarizations of the incident wave. Out of the various fractal structures studied,square Sierpinski carpet structure is found to give backscattering reduction for an appreciable range of frequencies. The frequency of minimum backscattering depends on the geometry of the structure as well as on the thickness of the substrate. This structure when loaded over a dihedral corner reflector is showing an enhancement in RCS for corner angles other than 90◦.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective use of fractal-based metallo-dielectric structures for enhancing the radar cross-section (RCS) of dihedral corner reflectors is reported. RCS enhancement of about 30 dBsm is obtained for corner reflectors with corner angles other than 90deg. This may find application in remote sensing and synthetic aperture radar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frames are the most widely used structural system for multistorey buildings. A building frame is a three dimensional discrete structure consisting of a number of high rise bays in two directions at right angles to each other in the vertical plane. Multistorey frames are a three dimensional lattice structure which are statically indeterminate. Frames sustain gravity loads and resist lateral forces acting on it. India lies at the north westem end of the Indo-Australian tectonic plate and is identified as an active tectonic area. Under horizontal shaking of the ground, horizontal inertial forces are generated at the floor levels of a multistorey frame. These lateral inertia forces are transferred by the floor slab to the beams, subsequently to the columns and finally to the soil through the foundation system. There are many parameters that affect the response of a structure to ground excitations such as, shape, size and geometry of the structure, type of foundation, soil characteristics etc. The Soil Structure Interaction (SS1) effects refer to the influence of the supporting soil medium on the behavior of the structure when it is subjected to different types of loads. Interaction between the structure and its supporting foundation and soil, which is a complete system, has been modeled with finite elements. Numerical investigations have been carried out on a four bay, twelve storeyed regular multistorey frame considering depth of fixity at ground level, at characteristic depth of pile and at full depth. Soil structure interaction effects have been studied by considering two models for soil viz., discrete and continuum. Linear static analysis has been conducted to study the interaction effects under static load. Free vibration analysis and further shock spectrum analysis has been conducted to study the interaction effects under time dependent loads. The study has been extended to four types of soil viz., laterite, sand, alluvium and layered.The structural responses evaluated in the finite element analysis are bending moment, shear force and axial force for columns, and bending moment and shear force for beams. These responses increase with increase in the founding depth; however these responses show minimal increase beyond the characteristic length of pile. When the soil structure interaction effects are incorporated in the analysis, the aforesaid responses of the frame increases upto the characteristic depth and decreases when the frame has been analysed for the full depth. It has been observed that shock spectrum analysis gives wide variation of responses in the frame compared to linear elastic analysis. Both increase and decrease in responses have been observed in the interior storeys. The good congruence shown by the two finite element models viz., discrete and continuum in linear static analysis has been absent in shock spectrum analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New mathematical methods to analytically investigate linear acoustic radiation and scattering from cylindrical bodies and transducer arrays are presented. Three problems of interest involving cylinders in an infinite fluid are studied. In all the three problems, the Helmholtz equation is used to model propagation through the fluid and the beam patterns of arrays of transducers are studied. In the first problem, a method is presented to determine the omni-directional and directional far-field pressures radiated by a cylindrical transducer array in an infinite rigid cylindrical baffle. The solution to the Helmholtz equation and the displacement continuity condition at the interface between the array and the surrounding water are used to determine the pressure. The displacement of the surface of each transducer is in the direction of the normal to the array and is assumed to be uniform. Expressions are derived for the pressure radiated by a sector of the array vibrating in-phase, the entire array vibrating in-phase, and a sector of the array phase-shaded to simulate radiation from a rectangular piston. It is shown that the uniform displacement required for generating a source level of 220 dB ref. μPa @ 1m that is omni directional in the azimuthal plane is in the order of 1 micron for typical arrays. Numerical results are presented to show that there is only a small difference between the on-axis pressures radiated by phased cylindrical arrays and planar arrays. The problem is of interest because cylindrical arrays of projectors are often used to search for underwater objects. In the second problem, the errors, when using data-independent, classical, energy and split beam correlation methods, in finding the direction of arrival (DOA) of a plane acoustic wave, caused by the presence of a solid circular elastic cylindrical stiffener near a linear array of hydrophones, are investigated. Scattering from the effectively infinite cylinder is modeled using the exact axisymmetric equations of motion and the total pressures at the hydrophone locations are computed. The effect of the radius of the cylinder, a, the distance between the cylinder and the array, b, the number of hydrophones in the array, 2H, and the angle of incidence of the wave, α, on the error in finding the DOA are illustrated using numerical results. For an array that is about 30 times the wavelength and for small angles of incidence (α<10), the error in finding the DOA using the energy method is less than that using the split beam correlation method with beam steered to α; and in some cases, the error increases when b increases; and the errors in finding the DOA using the energy method and the split beam correlation method with beam steered to α vary approximately as a7 / 4 . The problem is of interest because elastic stiffeners – in nearly acoustically transparent sonar domes that are used to protect arrays of transducers – scatter waves that are incident on it and cause an error in the estimated direction of arrival of the wave. In the third problem, a high-frequency ray-acoustics method is presented and used to determine the interior pressure field when a plane wave is normally incident on a fluid cylinder embedded in another infinite fluid. The pressure field is determined by using geometrical and physical acoustics. The interior pressure is expressed as the sum of the pressures due to all rays that pass through a point. Numerical results are presented for ka = 20 to 100 where k is the acoustic wavenumber of the exterior fluid and a is the radius of the cylinder. The results are in good agreement with those obtained using field theory. The directional responses, to the plane wave, of sectors of a circular array of uniformly distributed hydrophones in the embedded cylinder are then computed. The sectors are used to simulate linear arrays with uniformly distributed normals by using delays. The directional responses are compared with the output from an array in an infinite homogenous fluid. These outputs are of interest as they are used to determine the direction of arrival of the plane wave. Numerical results are presented for a circular array with 32 hydrophones and 12 hydrophones in each sector. The problem is of interest because arrays of hydrophones are housed inside sonar domes and acoustic plane waves from distant sources are scattered by the dome filled with fresh water and cause deterioration in the performance of the array.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wind energy has emerged as a major sustainable source of energy.The efficiency of wind power generation by wind mills has improved a lot during the last three decades.There is still further scope for maximising the conversion of wind energy into mechanical energy.In this context,the wind turbine rotor dynamics has great significance.The present work aims at a comprehensive study of the Horizontal Axis Wind Turbine (HAWT) aerodynamics by numerically solving the fluid dynamic equations with the help of a finite-volume Navier-Stokes CFD solver.As a more general goal,the study aims at providing the capabilities of modern numerical techniques for the complex fluid dynamic problems of HAWT.The main purpose is hence to maximize the physics of power extraction by wind turbines.This research demonstrates the potential of an incompressible Navier-Stokes CFD method for the aerodynamic power performance analysis of horizontal axis wind turbine.The National Renewable Energy Laboratory USA-NREL (Technical Report NREL/Cp-500-28589) had carried out an experimental work aimed at the real time performance prediction of horizontal axis wind turbine.In addition to a comparison between the results reported by NREL made and CFD simulations,comparisons are made for the local flow angle at several stations ahead of the wind turbine blades.The comparison has shown that fairly good predictions can be made for pressure distribution and torque.Subsequently, the wind-field effects on the blade aerodynamics,as well as the blade/tower interaction,were investigated.The selected case corresponded to a 12.5 m/s up-wind HAWT at zero degree of yaw angle and a rotational speed of 25 rpm.The results obtained suggest that the present can cope well with the flows encountered around wind turbines.The areodynamic performance of the turbine and the flow details near and off the turbine blades and tower can be analysed using theses results.The aerodynamic performance of airfoils differs from one another.The performance mainly depends on co-efficient of performnace,co-efficient of lift,co-efficient of drag, velocity of fluid and angle of attack.This study shows that the velocity is not constant for all angles of attack of different airfoils.The performance parameters are calculated analytically and are compared with the standardized performance tests.For different angles of ,the velocity stall is determined for the better performance of a system with respect to velocity.The research addresses the effect of surface roughness factor on the blade surface at various sections.The numerical results were found to be in agreement with the experimental data.A relative advantage of the theoretical aerofoil design method is that it allows many different concepts to be explored economically.Such efforts are generally impractical in wind tunnels because of time and money constraints.Thus, the need for a theoretical aerofoil design method is threefold:first for the design of aerofoil that fall outside the range of applicability of existing calalogs:second,for the design of aerofoil that more exactly match the requirements of the intended application:and third,for the economic exploration of many aerofoil concepts.From the results obtained for the different aerofoils,the velocity is not constant for all angles of attack.The results obtained for the aerofoil mainly depend on angle of attack and velocity.The vortex generator technique was meticulously studies with the formulation of the specification for the right angle shaped vortex generators-VG.The results were validated in accordance with the primary analysis phase.The results were found to be in good agreement with the power curve.The introduction of correct size VGs at appropriate locations over the blades of the selected HAWT was found to increase the power generation by about 4%