994 resultados para Breakdown products


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses an optimisation based decision support system and methodology for electronic packaging and product design and development which is capable of addressing in efficient manner specified environmental, reliability and cost requirements. A study which focuses on the design of a flip-chip package is presented. Different alternatives for the design of the flip-chip package are considered based on existing options for the applied underfill and volume of solder material used to form the interconnects. Variations in these design input parameters have simultaneous effect on package aspects such as cost, environmental impact and reliability. A decision system for the design of the flip-chip that uses numerical optimisation approach is used to identify the package optimal specification which satisfies the imposed requirements. The reliability aspect of interest is the fatigue of solder joints under thermal cycling. Transient nonlinear finite element analysis (FEA) is used to simulate the thermal fatigue damage in solder joints subject to thermal cycling. Simulation results are manipulated within design of experiments and response surface modelling framework to provide numerical model for reliability which can be used to quantify the package reliability. Assessment of the environmental impact of the package materials is performed by using so called Toxic Index (TI). In this paper we demonstrate the evaluation of the environmental impact only for underfill and lead-free solder materials. This evaluation is based on the amount of material per flip-chip package. Cost is the dominant factor in contemporary flip-chip packaging industry. In the optimisation based decision support system for the design of the flip-chip package, cost of materials which varies as a result of variations in the design parameters is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intriguing question, which until recently had not been directly explored by the courts, is the extent to which English law recognises body parts and products of the human body as property capable of ownership. Although the common law currently recognises no general property in a dead body (and only limited possessory rights in respect of it), this apparent “no-property rule” provides no justification, it is submitted, for denying proprietary status to parts or products of a living human body. The recent decision of the Court of Appeal in Yearworth v. North Bristol NHS Trust ([2009] EWCA Civ 37) lends strong support to the view that genetic material (as the product of a living human body) is capable of ownership, at least in the context of a claim in the tort of negligence and bailment. This article examines the various issues by reference to both English and Commonwealth authority.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solder paste is the most important strategic bonding material used in the assembly of surface mount devices in electronic industries. It is known to exhibit a thixotropic behavior, which is recognized by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterization of this time-dependent rheological behavior of solder pastes is crucial for establishing the relationships between the pastes structure and flow behavior; and for correlating the physical parameters with paste printing performance. In this article, we present a novel method which has been developed for characterizing the time-dependent and non-Newtonian rheological behavior of solder pastes and flux mediums as a function of shear rates. We also present results of the study of the rheology of the solder pastes and flux mediums using the structural kinetic modeling approach, which postulates that the network structure of solder pastes breaks down irreversibly under shear, leading to time and shear-dependent changes in the flow properties. Our results show that for the solder pastes used in the study, the rate and extent of thixotropy was generally found to increase with increasing shear rate. The technique demonstrated in this study has wide utility for R&D personnel involved in new paste formulation, for implementing quality control procedures used in solder-paste manufacture and packaging; and for qualifying new flip-chip assembly lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Nicardipine is a member of a family of calcium channel blockers named dihydropiridines that are known to be photolabile and may cause phototoxicity. It is therefore vital to develop analytical method which can study the photodegradation of nicardipine. Method: Forced acid degradation of nicardipine was conducted by heating 12 ml of 1 mg/ml nicardipine with 3 ml of 2.5 M HCl for two hours. A gradient HPLC medthod was developed using Agilent Technologies 1200 series quaternary system. Separation was achieved with a Hichrome (250 x 4.6 mm) 5 μm C18 reversed phase column and mobile phase composition of 70% A(100%v/v water) and 30% B(99%v/v acetonitrile + 1%v/v formic acid) at time zero, composition of A and B was then charged to 60%v/v A;40%v/v B at 10minutes, 50%v/v A; 50%v/v B at 30minutes and 70%v/v A; 30%v/v B at 35minutes. 20μl of 0.8mg/ml of nicardipine degradation was injected at room temperature (25oC). The gradient method was transferred onto a HPLC-ESI-MS system (HP 1050 series - AQUAMAX mass detector) and analysis conducted with an acid degradation concentration of 0.25mg/ml and 20μl injection volume. ESI spectra were acquired in positive ionisation mode with MRM 0-600 m/z. Results: Eleven nicardipine degradation products were detected in the HPLC analysis and the resolution (RS) between the respective degradants where 1.0, 1.2, 6.0, 0.4, 1.7, 3.7, 1.8, 1.0, and 1.7 respectively. Nine degradation products were identified in the ESI spectra with the respective m/z ratio; 171.0, 166.1, 441.2, 423.2, 455.2, 455.2, 331.1, 273.1, and 290.1. The possible molecular formulae for each degradants were ambiguously determined. Conclusion: A sensitive and specific method was developed for the analysis of nicardipine degradants. Method enables detection and quantification of nicardipine degradation products that can be used for the study of the kinetics of nicardipine degradation processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A number of factors are known to influence food preferences and acceptability of new products. These include their sensory characteristics and strong, innate neural influences. In designing foods for any target group, it is important to consider intrinsic and extrinsic characteristics which may contribute to palatability, and acceptability of foods. Objective: To assess age and gender influences on sensory perceptions of novel low cost nutrient-rich food products developed using traditional Ghanaian food ingredients. Materials and Methods: In this study, a range of food products were developed from Ghanaian traditional food sources using the Food Multimix (FMM) concept. These products were subjected to sensory evaluation to assess the role of sensory perception on their acceptability among different target age groups across the life cycle (aged 11-68 years olds) and to ascertain any possible influences of gender on preference and choice. Variables including taste, odour, texture, flavour and appearance were tested and the results captured on a Likert scale and scores of likeness and acceptability analysed. Multivariate analyses were used to develop prediction models for targeted recipe development for different target groups. Multiple factor analysis of variance (ANOVA) and logistic linear regression were employed to test the strength of acceptability and to ascertain age and gender influences on product preference. Results: The results showed a positive trend in acceptability (r = 0.602) which tended towards statistical significance (p = 0.065) with very high product favourability rating (91% acceptability; P=0.005). However, age [odds ratios=1.44 (11-15 years old) odds ratios=2.01 (18-68 years old) and gender (P=0.000)] were major influences on product preference with children and females (irrespective of age) showing clear preferences or dislike of products containing certain particular ingredients. Conclusion: These findings are potentially useful in planning recipes for feeding interventions involving different vulnerable and target groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydration of tricalcium silicate (C(3)S) in the presence of heavy metal is very important to cement-based solidification/stabilisation (s/s) of waste. In this work, tricalcium silicate pastes and aqueous suspensions doped with nitrate salts of Zn(2+), Pb(2+), Cu(2+) and Cr(3+) were examined at different ages by X-ray powder diffraction (XRD), thermal analysis (DTA/TG) and (29)Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). It was found that heavy metal doping accelerated C(3)S hydration, even though Zn(2+) doping exhibited a severe retardation effect at an early period of time of C(3)S hydration. Heavy metals retarded the precipitation of portlandite due to the reduction of pH resulted from the hydrolysis of heavy metal ions during C(3)S hydration. The contents of portlandite in the control, Cr(3+)-doped, Cu(2+)-doped, Pb(2+)-doped and Zn(2+)-doped C(3)S pastes aged 28 days were 16.7, 5.5, 5.5, 5.5, and <0.7%, respectively. Heavy metals co-precipitated with calcium as double hydroxides such as (Ca(2)Cr(OH)(7).3H(2)O, Ca(2)(OH)(4)4Cu(OH)(2).2H(2)O and CaZn(2)(OH)(6).2H(2)O). These compounds were identified as crystalline phases in heavy metal doping C(3)S suspensions and amorphous phases in heavy metal doping C(3)S pastes. (29)Si NMR data confirmed that heavy metals promoted the polymerisation of C-S-H gel in 1-year-old of C(3)S pastes. The average numbers of Si in C-S-H gel for the Zn(2+)-doped, Cu(2+)-doped, Cr(3+)-doped, control, and Pb(2+)-doped C(3)S pastes were 5.86, 5.11, 3.66, 3.62, and 3.52. And the corresponding Ca/Si ratios were 1.36, 1.41, 1.56, 1.57 and 1.56, respectively. This study also revealed that the presence of heavy metal facilitated the formation of calcium carbonate during C(3)S hydration process in the presence of carbon dioxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the trend toward further miniaturisation of pocket and handheld consumer electronic products continues apace, the requirements for even smaller solder joints will continue. With further reductions in the size of solder joints, the reliability of solder joints will become more and more critical to the long-term performance of electronic products. Solder joints play an important role in electronics packaging, serving both as electrical interconnections between the components and the board, and as mechanical support for components. With world-wide legislation for the removal/reduction of lead and other hazardous materials from electrical and electronic products, the electronics manufacturing industry has been faced with an urgent search for new lead-free solder alloy systems and other solder alternatives. In order to achieve high volume, low cost production, the stencil printing process and subsequent wafer bumping of solder paste has become indispensable. There is wide agreement in industry that the paste printing process accounts for the majority of assembly defects, and most defects originate from poor understanding of the effect of printing process parameters on printing performance. The printing of ICAs and lead-free solder pastes through the very small stencil apertures required for flip chip applications was expected to result in increased stencil clogging and incomplete transfer of paste to the printed circuit pads. Paste release from the stencil apertures is dependent on the interaction between the solder paste, surface pad and aperture wall; including its shape. At these very narrow aperture sizes the paste rheology becomes crucial for consistent paste withdrawal because for smaller paste volumes surface tension effects become dominant over viscous flow. Successful aperture filling and release will greatly depend on the rheology of the paste material. Wall-slip plays an important role in characterising the flow behaviour of solder paste materials. The wall- slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. The wall slip effect can play an important role in ensuring successful paste release after the printing process. The aim of this study was to investigate the influence of the paste microstructure on slip formation for the paste materials (lead-free solder paste and isotropic conductive adhesives). The effect of surface roughness on the paste viscosity was investigated. It was also found that altering the surface roughness of the parallel plate measuring geometry did not significantly eliminate wall slip as was expected. But results indicate that the use of a relatively rough surface helps to increase paste adhesion to the plates, inducing structural breakdown of the paste. Most importantly, the study also demonstrated on how the wall slip formation in the paste material could be utilised for understanding of the paste microstructure and its flow behaviour