677 resultados para Bleaching
Resumo:
Outbreaks of crown-of-thorns starfish (COTS), Acanthaster planci, contribute to major declines of coral reef ecosystems throughout the Indo-Pacific. As the oceans warm and decrease in pH due to increased anthropogenic CO2 production, coral reefs are also susceptible to bleaching, disease and reduced calcification. The impacts of ocean acidification and warming may be exacerbated by COTS predation, but it is not known how this major predator will fare in a changing ocean. Because larval success is a key driver of population outbreaks, we investigated the sensitivities of larval A. planci to increased temperature (2-4 °C above ambient) and acidification (0.3-0.5 pH units below ambient) in flow-through cross-factorial experiments (3 temperature × 3 pH/pCO2 levels). There was no effect of increased temperature or acidification on fertilization or very early development. Larvae reared in the optimal temperature (28 °C) were the largest across all pH treatments. Development to advanced larva was negatively affected by the high temperature treatment (30 °C) and by both experimental pH levels (pH 7.6, 7.8). Thus, planktonic life stages of A. planci may be negatively impacted by near-future global change. Increased temperature and reduced pH had an additive negative effect on reducing larval size. The 30 °C treatment exceeded larval tolerance regardless of pH. As 30 °C sea surface temperatures may become the norm in low latitude tropical regions, poleward migration of A. planci may be expected as they follow optimal isotherms. In the absence of acclimation or adaptation, declines in low latitude populations may occur. Poleward migration will be facilitated by strong western boundary currents, with possible negative flow-on effects on high latitude coral reefs. The contrasting responses of the larvae of A. planci and those of its coral prey to ocean acidification and warming are considered in context with potential future change in tropical reef ecosystems.
Resumo:
A previous study of the retinitis pigmentosa mutation L125R and two designed mutations at this site, L125A and L125F, showed that these mutations cause partial or total misfolding of the opsins expressed in COS cells from the corresponding mutant opsin genes. We now report on expression and characterization of the opsins from the following retinitis pigmentosa mutants in the transmembrane domain of rhodopsin that correspond to six of the seven helices: G51A and G51V (helix A), G89D (helix B), A164V (helix D), H211P (helix E), P267L and P267R (helix F), and T297R (helix G). All the mutations caused partial misfolding of the opsins as observed by the UV/visible absorption characteristics and by separation of the expressed opsins into fractions that bound 11-cis-retinal to form the corresponding mutant rhodopsins and those that did not bind 11-cis-retinal. Further, all the mutant rhodopsins prepared from the above mutants, except for G51A, showed strikingly abnormal bleaching behavior with abnormal metarhodopsin II photointermediates. The results show that retinitis pigmentosa mutations in every one of the transmembrane helices can cause misfolding of the opsin. Therefore, on the basis of these and previous results, we conclude that defects in the packing of the transmembrane helices resulting from these mutations are relayed to the intradiscal domain, where they cause misfolding of the opsin by inducing the formation of a disulfide bond other than the native Cys-110—Cys-187 disulfide bond. Thus, there is coupling between packing of the helices in the transmembrane domain and folding to a tertiary structure in the intradiscal domain.
Resumo:
The disulfide bond between Cys-110 and Cys-187 in the intradiscal domain is required for correct folding in vivo and function of mammalian rhodopsin. Misfolding in rhodopsin, characterized by the loss of ability to bind 11-cis-retinal, has been shown to be caused by an intradiscal disulfide bond different from the above native disulfide bond. Further, naturally occurring single mutations of the intradiscal cysteines (C110F, C110Y, and C187Y) are associated with retinitis pigmentosa (RP). To elucidate further the role of every one of the three intradiscal cysteines, mutants containing single-cysteine replacements by alanine residues and the above three RP mutants have been studied. We find that C110A, C110F, and C110Y all form a disulfide bond between C185 and C187 and cause loss of retinal binding. C185A allows the formation of a C110–C187 disulfide bond, with wild-type-like rhodopsin phenotype. C187A forms a disulfide bond between C110 and C185 and binds retinal, and the pigment formed has markedly altered bleaching behavior. However, the opsin from the RP mutant C187Y forms no rhodopsin chromophore.
Resumo:
How evergreen species store and protect chlorophyll during exposure to high light in winter remains unexplained. This study reveals that the evergreen snow gum (Eucalyptus pauciflora Sieb. ex Spreng.) stores and protects its chlorophylls by forming special complexes that are unique to the winter-acclimated state. Our in vivo spectral and kinetic characterizations reveal a prominent component of the chlorophyll fluorescence spectrum around 715 nm at 77 K. This band coincides structurally with a loss of chlorophyll and an increase in energy-dissipating carotenoids. Functionally, the band coincides with an increased capacity to dissipate excess light energy, absorbed by the chlorophylls, as heat without intrathylakoid acidification. The increased heat dissipation helps protect the chlorophylls from photo-oxidative bleaching and thereby facilitates rapid recovery of photosynthesis in spring.
Resumo:
Isotretinoin (13-cis retinoic acid) is frequently prescribed for severe acne [Peck, G. L., Olsen, T. G., Yoder, F. W., Strauss, J. S., Downing, D. T., Pandya, M., Butkus, D. & Arnaud-Battandier, J. (1979) N. Engl. J. Med. 300, 329–333] but can impair night vision [Fraunfelder, F. T., LaBraico, J. M. & Meyer, S. M. (1985) Am. J. Ophthalmol. 100, 534–537] shortly after the beginning of therapy [Shulman, S. R. (1989) Am. J. Public Health 79, 1565–1568]. As rod photoreceptors are responsible for night vision, we administered isotretinoin to rats to learn whether night blindness resulted from rod cell death or from rod functional impairment. High-dose isotretinoin was given daily for 2 months and produced systemic toxicity, but this caused no histological loss of rod photoreceptors, and rod-driven electroretinogram amplitudes were normal after prolonged dark adaptation. Additional studies showed, however, that even a single dose of isotretinoin slowed the recovery of rod signaling after exposure to an intense bleaching light, and that rhodopsin regeneration was markedly slowed. When only a single dose was given, rod function recovered to normal within several days. Rods and cones both showed slow recovery from bleach after isotretinoin in rats and in mice. HPLC analysis of ocular retinoids after isotretinoin and an intense bleach showed decreased levels of rhodopsin chromophore, 11-cis retinal, and the accumulation of the biosynthetic intermediates, 11-cis and all-trans retinyl esters. Isotretinoin was also found to protect rat photoreceptors from light-induced damage, suggesting that strategies of altering retinoid cycling may have therapeutic implications for some forms of retinal and macular degeneration.
Resumo:
Coral reefs, with their millions of species, have changed profoundly because of the effects of people, and will continue to do so for the foreseeable future. Reefs are subject to many of the same processes that affect other human-dominated ecosystems, but some special features merit emphasis: (i) Many dominant reef builders spawn eggs and sperm into the water column, where fertilization occurs. They are thus particularly vulnerable to Allee effects, including potential extinction associated with chronic reproductive failure. (ii) The corals likely to be most resistant to the effects of habitat degradation are small, short-lived “weedy” corals that have limited dispersal capabilities at the larval stage. Habitat degradation, together with habitat fragmentation, will therefore lead to the establishment of genetically isolated clusters of inbreeding corals. (iii) Increases in average sea temperatures by as little as 1°C, a likely result of global climate change, can cause coral “bleaching” (the breakdown of coral–algal symbiosis), changes in symbiont communities, and coral death. (iv) The activities of people near reefs increase both fishing pressure and nutrient inputs. In general, these processes favor more rapidly growing competitors, often fleshy seaweeds, and may also result in explosions of predator populations. (v) Combinations of stress appear to be associated with threshold responses and ecological surprises, including devastating pathogen outbreaks. (vi) The fossil record suggests that corals as a group are more likely to suffer extinctions than some of the groups that associate with them, whose habitat requirements may be less stringent.
Resumo:
L125R is a mutation in the transmembrane helix C of rhodopsin that is associated with autosomal dominant retinitis pigmentosa. To probe the orientation of the helix and its packing in the transmembrane domain, we have prepared and studied the mutations E122R, I123R, A124R, S127R, L125F, and L125A at, and in proximity to, the above mutation site. Like L125R, the opsin expressed in COS-1 cells from E122R did not bind 11-cis-retinal, whereas those from I123R and S127R formed the rhodopsin chromophore partially. A124R opsin formed the rhodopsin chromophore (lambda max 495 nm) in the dark, but the metarhodopsin II formed on illumination decayed about 6.5 times faster than that of the wild type and was defective in transducin activation. The mutant opsins from L125F and L125A bound 11-cis-retinal only partially, and in both cases, the mixtures of the proteins produced were separated into retinal-binding and non-retinal-binding (misfolded) fractions. The purified mutant rhodopsin from L125F showed lambda max at 500 nm, whereas that from L125A showed lambda max at 503 nm. The mutant rhodopsin L125F showed abnormal bleaching behavior and both mutants on illumination showed destabilized metarhodopsin II species and reduced transducin activation. Because previous results have indicated that misfolding in rhodopsin is due to the formation of a disulfide bond other than the normal disulfide bond between Cys-110 and Cys-187 in the intradiscal domain, we conclude from the misfolding in mutants L125F and L125A that the folding in vivo in the transmembrane domain is coupled to that in the intradiscal domain.
Resumo:
O objetivo deste estudo in vivo, internacional, randomizado e duplo cedo foi avaliar comparativamente a efetividade e o pH de diferentes géis clareadores na técnica de clareamento em consultório, com e sem o emprego de fonte de luz híbrida em função do grau de alteração de cor, sensibilidade e manutenção do tratamento ao longo de 12 meses de acompanhamento. Foram selecionados 48 voluntários de acordo com os critérios de inclusão e exclusão. Os pacientes foram divididos, de forma randomizada, em 4 grupos de 12 participantes cada, onde: Grupo EXP10 5 aplicações do gel de peróxido de hidrogênio a 10% (Gel Experimental DMC Equipamentos) e ativação de luz híbrida de LED (violeta)/Laser (Experimental DMC Equipamentos) com 7′ e 30″ por aplicação, com tempo total de 37′30; Grupo LP15 5 aplicações do gel de peróxido de hidrogênio 15% (Lase Peroxide Lite DMC Equipamentos) seguindo mesmo protocolo do grupo EXP10; Grupo TB35LH 3 aplicações do gel de peróxido de hidrogênio a 35% (Total Blanc Office - DFL) e ativação de luz híbrida de LED (azul)/Laser (Whitening Lase II DMC Equipamentos) de 7′ e 30″ por aplicação, com tempo total de 22′30″; Grupo TB35 3 aplicações do gel de peróxido de hidrogênio a 35% (Total Blanc Office - DFL) sem ativação com fonte de luz, totalizando 45″. A determinação dos valores de pH foi realizada com o peagômetro digital (Sentron Model 1001, Sentron) nos tempos inicial e após o término do protocolo clareador. A aferição da cor foi feita com espectofotômetro VITA Easyshade antes do clareamento, após 24 horas, 1 semana, 1, 6 e 12 meses. A sensibilidade dentária e grau de satisfação dos pacientes foram avaliados por meio do questionário VAS e IPS antes, imediatamente após o clareamento, 24 horas e uma semana após. Os resultados da alteração do pH receberam tratamento estatístico pela ANOVA e teste de Bonferroni a 0,05%. Os resultados indicaram que o pH aumentou do momento inicial para o final para todos os protocolos. Não houve diferenças significativas entre os protocolos TB35 e TB35LH em nenhum dos momentos, e o pH médio do grupo EXP10 foi maior em comparação aos outros três grupos nos dois momentos avaliados. Os resultados do ΔE receberam tratamento estatístico pela ANOVA e teste de Bonferroni a 0,05%. Os resultados indicaram que não houve diferença significativa entre os grupos LP15, TB35 e TB35LH. O ΔE médio observado após 24 horas foi estatisticamente maior que para os outros tempos (inicial, 1 semana, 1 mês, 6 e 12 meses). Para análise da sensibilidade foi construído um modelo linear misto e atribuídos postos (ranks) aos valores de Δ e teste de Bonferroni a 0,05% para comparações pareadas. Não houve diferença nos valores da sensibilidade imediatamente e 24 horas após o tratamento, com relação ao momento inicial. Houve diferença significativa entre Δ1 e Δ3 indicando que a sensação de dor após uma semana do tratamento foi menor do que as observadas nos instantes imediato e após 24 horas. Para os resultados de satisfação foi construído um modelo linear misto e atribuídos postos (ranks) e o Método de Bonferroni (0,05%) foi utilizado para as comparações pareadas do efeito de tempo. Os resultados indicam queda nos níveis de satisfação entre os períodos imediato e um ano e entre os períodos 24 horas e um ano. Todos os géis clareadores apresentaram mínima variação do pH nos tempos avaliados, entretanto houve um aumento do pH da primeira para a última aplicação em todos os grupos estudados e o grupo EXP10 apresentou os maiores valores de pH seguido do LP15, TB35LH e TB35 apresentaram os valores mais baixos de pH. Os grupos LP15, TB35 e TB35LH apresentaram menor variação da cor ao longo de 12 meses de acompanhamento. O efeito do protocolo clareador não influenciou a sensibilidade dos pacientes e após uma semana a sensibilidade retornaram aos níveis normais. O nível de satisfação dos pacientes foi significativo em relação ao tempo e não aos protocolos clareadores, os pacientes do grupo TB35 mostraram-se mais insatisfeitos ao longo da pesquisa.
Resumo:
In the field of energy saving, finding composite materials with the ability of coloring upon both illumination and change of the applied electrode potential keeps on being an important goal. In this context, chemical bath deposition of Ni(OH)2 into nanoporous TiO2 thin films supported on conducting glass leads to electrodes showing both conventional electrochromic behavior (from colorless to dark brown and vice versa) together with photochromism at constant applied potential. The latter phenomenon, reported here for the first time, is characterized by fast and reversible coloration upon UV illumination. The bleaching kinetics shows first order behavior with respect to the NiIII centers in the film, and an order 1.2 with respect to electrons in the TiO2 film. From a more applied point of view, this study opens up the possibility of having two-mode smart windows showing not only conventional electrochromism but also reversible darkening upon illumination.
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
Using the results from the NCAR CSM1.4-coupled global carbon cycle– climate model under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios SRES A2 and B1, we estimated the effects of both global warming and ocean acidification on the future habitats of corals in the seas around Japan during this century. As shown by Yara et al. (Biogeosciences 9:4955–4968,2012), under the high-CO₂-emission scenario (SRES A2), coral habitats will be sandwiched and narrowed between the northern region, where the saturation state of the carbonate mineral aragonite (Ωarag) decreases, and the southern region, where coral bleaching occurs. We found that under the low-emission scenario SRES B1, the coral habitats will also shrink in the northern region by the reduced Ωarag but to a lesser extent than under SRES A2, and in contrast to SRES A2, no bleaching will occur in the southern region. Therefore, coral habitats in the southern region are expected to be largely unaffected by ocean acidification or surface warming under the low-emission scenario. Our results show that potential future coral habitats depend strongly on CO₂ emissions and emphasize the importance of reducing CO₂ emissions to prevent negative impacts on coral habitats.
Resumo:
During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges. The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite+/-illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite+/-mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite+/-illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite+/-chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ~250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite+/-chlorite alteration formed at ~300°C; (2) chlorite+/-illite alteration at 235°C; (3) chlorite+/-illite and mixed layer clay alteration; and (4) chlorite+/-illite alteration at 220°C. Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly present in the pyrophyllites. Illite shows a significant enrichment for Cs and Cu relative to the bulk altered samples. Considerations of mineral stability allow us to place some constraints on fluid chemistry. Hydrothermal fluid pH for the chloritization and illitization was neutral to slightly acidic and relatively acidic for the pyrophyllite alteration. In general the fluids, especially from Roman Ruins and at intermediate depths below Snowcap, show only a small proportion of seawater mixing (<10%). Fluids in shallow and deep parts of the Snowcap holes, in contrast, show stronger seawater influence.