992 resultados para Biology, Animal Physiology|Chemistry, Biochemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The climate is one of the main elements of the natural environment that governs the life of man. Specific conditions of temperature, humidity, light, wind and precipitation have direct influence on physiological conditions that man needs to survive and more than that, besides the influence on human and animal physiology, the climatic elements are also responsible for a significant portion of economic activities such as industry, agriculture, commerce, transportation, and others. Therefore, any change in weather patterns has great impact on daily activities, and even more in urban sites, where the most of population is concentrated nowadays. Based on this discussion and concerned in understand the atmospheric structure, this monograph intends to analyze the pattern of atmospheric and temperature element in seven cities of small and medium size located in the state of São Paulo countryside... (Complete abstract click electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Doxorubicin can cause cardiotoxicity. Matrix metalloproteinases (MMP) are responsible for degrading extracellular matrix components which play a role in ventricular dilation. Increased MMP activity occurs after chronic doxorubicin treatment. In this study we evaluated in vivo and in vitro cardiac function in rats with acute doxorubicin treatment, and examined myocardial MMP and inflammatory activation, and gene expression of proteins involved in myocyte calcium transients. Methods: Wistar rats were injected with doxorubicin (Doxo, 20 mg/kg) or saline (Control). Echocardiogram was performed 48 h after treatment. Myocardial function was assessed in vitro in Langendorff preparation. Results: In left ventricle, doxorubicin impaired fractional shortening (Control 0.59 +/- 0.07; Doxo 0.51 +/- 0.05; p < 0.001), and increased isovolumetric relaxation time (Control 20.3 +/- 4.3; Doxo 24.7 +/- 4.2 ms; p = 0.007) and myocardial passive stiffness. MMP-2 activity, evaluated by zymography, was increased in Doxo (Control 141338 +/- 8924; Doxo 188874 +/- 7652 arbitrary units; p < 0.001). There were no changes in TNF-alpha, INF-gamma, IL-10, and ICAM-1 myocardial levels. Expression of phospholamban, Serca-2a, and ryanodine receptor did not differ between groups. Conclusion: Acute doxorubicin administration induces in vivo left ventricular dysfunction and in vitro increased myocardial passive stiffness in rats. Cardiac dysfunction is related to myocardial MMP-2 activation. Increased inflammatory stimulation or changed expression of the proteins involved in intracellular calcium transients is not involved in acute cardiac dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fish bioassays are valuable tools that can be used to elucidate the toxicological potential of numerous substances that are present in the aquatic environment. In this study, we assessed the antagonistic action of selenium (Se) against the toxicity of mercury (Hg) in fish (Oreochromis niloticus). Six experimental groups with six fish each were defined as follows: (1) control, (2) mercury (HgCl2), (3) sodium selenite (Na2Se4O3), (4) sodium selenate (Na2Se6O4), (5) mercury + sodium selenite (HgCl2 + Na2Se4O3), and (6) mercury + sodium selenate (HgCl2 + Na2Se6O4). Hematological parameters [red blood cells (RBC), white blood cells (WBC), and erythroblasts (ERB)] in combination with cytogenotoxicity biomarkers [nuclear abnormalities (NAs) and micronuclei (MN)] were examined after three, seven, ten, and fourteen days. After 7 days of exposure, cytogenotoxic effects and increased erythroblasts caused by mercury, leukocytosis triggered by mercury + sodium selenite, leukopenia associated with sodium selenate, and anemia triggered by mercury + sodium selenate were observed. Positive correlations that were independent of time were observed between WBC and RBC, ERB and MN, and NA and MN. The results suggest that short-term exposure to chemical contaminants elicited changes in blood parameters and produced cytogenotoxic effects. Moreover, NAs are the primary manifestations of MN formation and should be included in a class characterized as NA only. Lastly, the staining techniques used can be applied to both hematological characterization and the measurement of cytogenotoxicity biomarkers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neural circuitry for social behavior and aggression appears to be evolutionarily conserved across the vertebrate subphylum and involves a complex neural network that includes the hypothalamus as a key structure. In the present study, we evaluated the changes in monoamine levels in the hypothalamus and on serum cortisol and plasma glucose of resident matrinxã (Brycon amazonicus) submitted to a social challenge (introduction of an intruder in their territory). The fight promoted a significant increase in hypothalamic 5-HT, NA and DA levels and on the metabolites 5-HIAA and DOPAC, and decreased 5-HIAA/5-HT and DOPAC/DA ratios in resident fish. Furthermore, an increase in serum cortisol and plasma glucose was also observed after the fight. Resident fish presented a high aggressiveness even with increased 5-HT levels in the hypothalamus. The alteration in hypothalamic monoaminergic activity of matrinxã suggests that this diencephalic region is involved in aggression and stress modulation in fish; however, it does not exclude the participation of other brain areas not tested here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable isotope analyses have helped in assessing dietary switches if the diet undergoes metabolic alteration (isotopic exchange). However, when considering the effects over time of switching from one diet to another, one can assess how quickly the new diet is incorporated into tissues via the isotopic renewal or incorporation rate, or turnover. Turnover is obtained using exponential curves that fit the original data, allowing the determination of practical order parameters such as the half-life (T) and the turnover constant (k). Researchers have found that metabolic incorporation can be fractionated. The resulting fractions, called metabolic pools, are identified using the linearization of the isotopic exchange model and its linear fit. This fractionation methodology is still not well defined. The objective of this study was to assess the behaviour of the metabolic renewal rate (turnover) in fractionated form, explain the theory, and apply it to data from the avian duodenal mucosa and albumen. We concluded that the duodenal mucosa has one metabolic pool, with a half-life of 1.23 days, and that the albumen has two metabolic pools, with half-lives of 1.89 and 6.32 days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous research on energy requirements of female Saanen goats, using the factorial approach, has not considered the specific requirements for maintenance and growth during the pubertal phase. Thus, the purpose of this study was to estimate energy requirements for maintenance (Trial 1) and growth (Trial 2) of non-pregnant and non-lactating female Saanen goats at the pubertal phase from 30 to 45 kg. In Trial 1, the net energy requirements for maintenance (NEm ) were estimated using 18 female Saanen goats randomly assigned to three levels of intake: ad libitum, and 70% and 40% of ad libitum intake. These animals were pair-fed in six slaughter groups, each consisting of one animal for each level of intake. In Trial 2, the net energy requirements for growth (NEg ) were estimated using 18 female Saanen goats, which were fed ad libitum and slaughtered at targeted BW of 30, 38 and 45 kg. The NEm was 52 kcal/kg(0.75) of BW. The NEg increased from 3.5 to 4.7 Mcal/kg of BW gain as BW increased from 30 to 45 kg. Our results suggest that the guidelines of the major feeding systems for the entire growth phase may not be adequate for females at pubertal phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Michigan Departments of Agriculture, Community Health, and Natural Resources, US Department of Agriculture (USDA) and Michigan State University work cooperatively together as the bovine TB eradication project partners. The interagency group combines expertise in epidemiology, veterinary and human medicine, pathology, wildlife biology, animal husbandry, regulatory law and policy and risk communications. The stakeholders, those impacted by the disease, include agriculture and tourism industry representatives, “Mom-and-Pop” businesses, hunters, wildlife enthusiasts, farmers, Local Health Departments and legislators. The regulatory agencies are the above mentioned project partners, excluding MSU and USDA Wildlife Services, both of which offer services to agencies and stakeholders. Eradicating bovine TB would not be difficult if there were no social issues surrounding it. The economy, hunting traditions, animal management, tourism and human health are all impacted by regulatory response to the disease. Often the social issues play a large role in decision making, therefore it is important to understand your clientele and anticipate public reaction to policy changes and requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection of pertinent biomarkers has the potential provide an early indication of disease progression before considerable damage has been incurred. A decrease in an individual’s sensitivity to insulin, which may be quantified as the ratio of insulin to glucose in the blood after a glucose pulse, has recently been reported as an early predictor of insulin-dependent diabetes mellitus. Routine measurement of insulin levels is therefore desirable in the care of diabetes-prone individuals. A rapid, simple, and reagentless method for insulin detection would allow for wide-spread screenings that provide earlier signs of diabetes onset. The aim of this thesis is to develop a folding-base electrochemical sensor for the detection of insulin. The sensor described herein consists of a DNA probe immobilized on a gold disc electrode via an alkanethiol linker and embedded in an alkanethiol self-assembled monolayer. The probe is labeled with a redox reporter, which readily transfers electrons to the gold electrode in the absence of insulin. In the presence of insulin, electron transfer is inhibited, presumably due to a binding-induced conformational or dynamic change in the DNA probe that significantly alters the electron-tunneling pathway. A 28-base segment of the insulin-linked polymorphic region that has been reported to bind insulin with high affinity serves as the capture element of the DNA probe. Three probe constructs that vary in their secondary structure and position of the redox label are evaluated for their utility as insulin-sensing elements on the electrochemical platform. The effects of probe modification on secondary structure are also evaluated using circular dichroism spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modification of proteins by reducing sugars is a process that occurs naturally in the body. This process, which is known as glycation, has been linked to many of the chronic complications encountered during diabetes. Glycation has also been linked to changes in the binding of human serum albumin (HSA) to several drugs and small solutes in the body. While these effects are known, there is little information that explains why these changes in binding occur. The goal of this project was to obtain qualitative and quantitative information about glycation that occurs on HSA. The first section of this dissertation examined methods that could be used to quantify and identify glycation that occurs on HSA. The extent of glycation that occurred on HSA was quantified using oxygen-18 labeling mass spectrometry and the glycation sites were identified by observing the mass-to-charge (m/z) shifts that occurred in glycated HSA. This initial investigation revealed that oxygen-18 labeling based quantitation can be improved over previous methods if a relative comparison is done with oxygen-18 labeled peptides in a control HSA sample. Similarly, the process of making m/z shift-based assignments could be improved if only the peptides that were unique to the glycated HSA samples were used with internal calibration. These techniques were used in subsequent chapters for the assignment of early and late-stage glycation products on HSA. The regions of HSA that contained the highest amount of modification were identified, quantified, and ranked in order of their relative abundance. Of the commonly reported glycation sites, the N-terminus was found to have the highest extent of modification, followed by lysines 525, 199, and 439. The relative amount of modification on lysine 281, with respect to the aforementioned residues, varied with different degrees of glycation. The oxygen-18 labeling approach used for this analysis was novel because it allowed for the simultaneous quantification of all glycation-related modifications that were occurring on HSA. As such, several arginine residues were also found to have high amounts of modification on glycated HSA.