963 resultados para Biological monitoring
Resumo:
This chapter investigates a variety of water quality assessment tools for reservoirs with balanced/unbalanced monitoring designs and focuses on providing informative water quality assessments to ensure decision-makers are able to make risk-informed management decisions about reservoir health. In particular, two water quality assessment methods are described: non-compliance (probability of the number of times the indicator exceeds the recommended guideline) and amplitude (degree of departure from the guideline). Strengths and weaknesses of current and alternative water quality methods will be discussed. The proposed methodology is particularly applicable to unbalanced designs with/without missing values and reflects the general conditions and is not swayed too heavily by the occasional extreme value (very high or very low quality). To investigate the issues in greater detail, we use as a case study, a reservoir within South-East Queensland (SEQ), Australia. The purpose here is to obtain an annual score that reflected the overall water quality, temporally, spatially and across water quality indicators for each reservoir.
Resumo:
This article develops methods for spatially predicting daily change of dissolved oxygen (Dochange) at both sampled locations (134 freshwater sites in 2002 and 2003) and other locations of interest throughout a river network in South East Queensland, Australia. In order to deal with the relative sparseness of the monitoring locations in comparison to the number of locations where one might want to make predictions, we make a classification of the river and stream locations. We then implement optimal spatial prediction (ordinary and constrained kriging) from geostatistics. Because of their directed-tree structure, rivers and streams offer special challenges. A complete approach to spatial prediction on a river network is given, with special attention paid to environmental exceedances. The methodology is used to produce a map of Dochange predictions for 2003. Dochange is one of the variables measured as part of the Ecosystem Health Monitoring Program conducted within the Moreton Bay Waterways and Catchments Partnership.
Resumo:
1. Stream ecosystem health monitoring and reporting need to be developed in the context of an adaptive process that is clearly linked to identified values and objectives, is informed by rigorous science, guides management actions and is responsive to changing perceptions and values of stakeholders. To be effective, monitoring programmes also need to be underpinned by an understanding of the probable causal factors that influence the condition or health of important environmental assets and values. This is often difficult in stream and river ecosystems where multiple stressors, acting at different spatial and temporal scales, interact to affect water quality, biodiversity and ecosystem processes. 2. In this article, we describe the development of a freshwater monitoring programme in South East Queensland, Australia, and how this has been used to report on ecosystem health at a regional scale and to guide investments in catchment protection and rehabilitation. We also discuss some of the emerging science needs to identify the appropriate scale and spatial arrangement of rehabilitation to maximise river ecosystem health outcomes and, at the same time, derive other benefits downstream. 3. An objective process was used to identify potential indicators of stream ecosystem health and then test these across a known catchment land-use disturbance gradient. From the 75 indicators initially tested, 22 from five indicator groups (water quality, ecosystem metabolism, nutrient cycling, invertebrates and fish) responded strongly to the disturbance gradient, and 16 were subsequently recommended for inclusion in the monitoring programme. The freshwater monitoring programme was implemented in 2002, funded by local and State government authorities, and currently involves the assessment of over 120 sites, twice per year. This information, together with data from a similar programme on the region's estuarine and coastal marine waters, forms the basis of an annual report card that is presented in a public ceremony to local politicians and the broader community. 4. Several key lessons from the SEQ Healthy Waterways Programme are likely to be transferable to other regional programmes aimed at improving aquatic ecosystem health, including the importance of a shared common vision, the involvement of committed individuals, a cooperative approach, the need for defensible science and effective communication. 5. Thematic implications: this study highlights the use of conceptual models and objective testing of potential indicators against a known disturbance gradient to develop a freshwater ecosystem health monitoring programme that can diagnose the probable causes of degradation from multiple stressors and identify the appropriate spatial scale for rehabilitation or protection. This approach can lead to more targeted management investments in catchment protection and rehabilitation, greater public confidence that limited funds are being well spent and better outcomes for stream and river ecosystem health.
Resumo:
This thesis developed a practical, cost effective, easy-to-use method for measuring the vertical displacements of bridges using fiber Bragg grating (FBG) sensors, which includes the curvature and inclination approaches. These approaches were validated by the numerical simulation tests on a full scale bridge and the laboratory-based tests. In doing so, a novel frictionless FBG inclination sensor with extremely high sensitivity and resolution has also been developed and validated.
Resumo:
PURPOSE. We develop a sheep thoracic spine interbody fusion model to study the suitability of polycaprolactone-based scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within the thoracic spine. The surgical approach is a mini- open thoracotomy with relevance to minimally invasive deformity correction surgery for adolescent idiopathic scoliosis. To date there are no studies examining the use of this biodegradable implant in combination with biologics in a sheep thoracic spine model. METHODS. In the present study, six sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone-based scaffold plus 0.54μg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion was assessed at six months post-surgery. RESULTS. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL- based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluations of the respective groups. Biomechanical testing revealed significantly higher stiffness for the rhBMP-2 plus PCL- based scaffold group in all loading directions in comparison to the other two groups. CONCLUSION. The results of this study demonstrate that rhBMP-2 plus PCL- based scaffold is a viable bone graft substitute, providing an optimal environment for thoracic interbody spinal fusion in a large animal model.
Resumo:
Motivated by the analysis of the Australian Grain Insect Resistance Database (AGIRD), we develop a Bayesian hurdle modelling approach to assess trends in strong resistance of stored grain insects to phosphine over time. The binary response variable from AGIRD indicating presence or absence of strong resistance is characterized by a majority of absence observations and the hurdle model is a two step approach that is useful when analyzing such a binary response dataset. The proposed hurdle model utilizes Bayesian classification trees to firstly identify covariates and covariate levels pertaining to possible presence or absence of strong resistance. Secondly, generalized additive models (GAMs) with spike and slab priors for variable selection are fitted to the subset of the dataset identified from the Bayesian classification tree indicating possibility of presence of strong resistance. From the GAM we assess trends, biosecurity issues and site specific variables influencing the presence of strong resistance using a variable selection approach. The proposed Bayesian hurdle model is compared to its frequentist counterpart, and also to a naive Bayesian approach which fits a GAM to the entire dataset. The Bayesian hurdle model has the benefit of providing a set of good trees for use in the first step and appears to provide enough flexibility to represent the influence of variables on strong resistance compared to the frequentist model, but also captures the subtle changes in the trend that are missed by the frequentist and naive Bayesian models.
Resumo:
This thesis was a step forward in extracting valuable features from human's movement behaviour in terms of space utilisation based on Media-Access-Control data. This research offered a low-cost and less computational complexity approach compared to existing human's movement tracking methods. This research was successfully applied in QUT's Gardens Point campus and can be scaled to bigger environments and societies. Extractable information from human's movement by this approach can add a significant value to studying human's movement behaviour, enhancing future urban and interior design, improving crowd safety and evacuation plans.
Resumo:
This paper addresses the problem of determining optimal designs for biological process models with intractable likelihoods, with the goal of parameter inference. The Bayesian approach is to choose a design that maximises the mean of a utility, and the utility is a function of the posterior distribution. Therefore, its estimation requires likelihood evaluations. However, many problems in experimental design involve models with intractable likelihoods, that is, likelihoods that are neither analytic nor can be computed in a reasonable amount of time. We propose a novel solution using indirect inference (II), a well established method in the literature, and the Markov chain Monte Carlo (MCMC) algorithm of Müller et al. (2004). Indirect inference employs an auxiliary model with a tractable likelihood in conjunction with the generative model, the assumed true model of interest, which has an intractable likelihood. Our approach is to estimate a map between the parameters of the generative and auxiliary models, using simulations from the generative model. An II posterior distribution is formed to expedite utility estimation. We also present a modification to the utility that allows the Müller algorithm to sample from a substantially sharpened utility surface, with little computational effort. Unlike competing methods, the II approach can handle complex design problems for models with intractable likelihoods on a continuous design space, with possible extension to many observations. The methodology is demonstrated using two stochastic models; a simple tractable death process used to validate the approach, and a motivating stochastic model for the population evolution of macroparasites.
Resumo:
Continuous monitoring of diesel engine performance is critical for early detection of fault developments in an engine before they materialize into a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few nonintrusive condition monitoring techniques that can be utilized for such a task. Furthermore, the technique is more suitable for mass industry deployments than other non-intrusive methods such as vibration and acoustic emission techniques due to the low instrumentation cost, smaller data size and robust signal clarity since IAS is not affected by the engine operation noise and noise from the surrounding environment. A combination of IAS and order analysis was employed in this experimental study and the major order component of the IAS spectrum was used for engine loading estimation and fault diagnosis of a four-stroke four-cylinder diesel engine. It was shown that IAS analysis can provide useful information about engine speed variation caused by changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectra directly associated with the engine firing frequency (at twice the mean shaft rotating speed) can be utilized to estimate engine loading condition regardless of whether the engine is operating at healthy condition or with faults. The amplitude of this order component follows a distinctive exponential curve as the loading condition changes. A mathematical relationship was then established in the paper to estimate the engine power output based on the amplitude of this order component of the IAS spectrum. It was further illustrated that IAS technique can be employed for the detection of a simulated exhaust valve fault in this study.
Resumo:
Quantum cascade laserabsorption spectroscopy was used to measure the absolute concentration of acetylene in situ during the nanoparticle growth in Ar + C2H2 RF plasmas. It is demonstrated that the nanoparticle growth exhibits a periodical behavior, with the growth cycle period strongly dependent on the initial acetylene concentration in the chamber. Being 300 s at 7.5% of acetylene in the gas mixture, the growth cycle period decreases with the acetylene concentration increasing; the growth eventually disappears when the acetylene concentration exceeds 32%. During the nanoparticle growth, the acetylene concentration is small and does not exceed 4.2% at radio frequency (RF) power of 4 W, and 0.5% at RF power of 20 W. An injection of a single acetylene pulse into the discharge also results in the nanoparticlenucleation and growth. The absorption spectroscopy technique was found to be very effective for the time-resolved measurement of the hydrocarbon content in nanoparticle-generatingplasmas.
Resumo:
In this paper, a novel data-driven approach to monitoring of systems operating under variable operating conditions is described. The method is based on characterizing the degradation process via a set of operation-specific hidden Markov models (HMMs), whose hidden states represent the unobservable degradation states of the monitored system while its observable symbols represent the sensor readings. Using the HMM framework, modeling, identification and monitoring methods are detailed that allow one to identify a HMM of degradation for each operation from mixed-operation data and perform operation-specific monitoring of the system. Using a large data set provided by a major manufacturer, the new methods are applied to a semiconductor manufacturing process running multiple operations in a production environment.
Contrast transfer function correction applied to cryo-electron tomography and sub-tomogram averaging
Resumo:
Cryo-electron tomography together with averaging of sub-tomograms containing identical particles can reveal the structure of proteins or protein complexes in their native environment. The resolution of this technique is limited by the contrast transfer function (CTF) of the microscope. The CTF is not routinely corrected in cryo-electron tomography because of difficulties including CTF detection, due to the low signal to noise ratio, and CTF correction, since images are characterised by a spatially variant CTF. Here we simulate the effects of the CTF on the resolution of the final reconstruction, before and after CTF correction, and consider the effect of errors and approximations in defocus determination. We show that errors in defocus determination are well tolerated when correcting a series of tomograms collected at a range of defocus values. We apply methods for determining the CTF parameters in low signal to noise images of tilted specimens, for monitoring defocus changes using observed magnification changes, and for correcting the CTF prior to reconstruction. Using bacteriophage PRDI as a test sample, we demonstrate that this approach gives an improvement in the structure obtained by sub-tomogram averaging from cryo-electron tomograms.
Resumo:
Objectives: Children with type 1 diabetes mellitus (DM1) may be at increased risk of psychosocial and adjustment difficulties. We examined behavioral outcomes six months post-diagnosis in a group of children with newly diagnosed DM1. Methods: This study formed part of a larger longitudinal project examining pathophysiology and neuropsychological outcomes in diabetic patients with or without diabetic ketoacidosis (DKA). Participants were 61 children (mean age 11.8 years, SD 2.7 years) who presented with a new diagnosis of DM1 at the Royal Children’s Hospital, Melbourne. Twenty-three (11 female) presented in DKA and 38 (14 female) without DKA. Parents completed the behavior assessment system for children, second edition six months post-diagnosis. Results: There was a non-linear relationship between age and behavior. Internalising problems (i.e. anxiety depression, withdrawal) peaked in the transition from childhood to adolescence; children aged 10–13 years had elevated rates relative to the normal population (t = 2.55, P = 0.018). There was a non-significant trend for children under 10 to display internalising problems (P = 0.052), but rates were not elevated in children over 13 (P = 0.538). Externalising problems were not significantly elevated in any age group. Interestingly, children who presented in DKA were at lower risk of internalising problems than children without DKA (t = 3.83, P < 0.001). There was no effect of DKA on externalising behaviors. Conclusions: Children transitioning from childhood to adolescence are at significant risk for developing internalising problems such as anxiety and lowered mood after diagnosis of DM1. Somewhat counter-intuitively, parents of children presenting in DKA reported fewer internalising symptoms than parents of children without DKA. These results highlight the importance of monitoring and supporting psychosocial adjustment in newly diagnosed children even when they seem physically well.
Resumo:
Objective To evaluate methods for monitoring monthly aggregated hospital adverse event data that display clustering, non-linear trends and possible autocorrelation. Design Retrospective audit. Setting The Northern Hospital, Melbourne, Australia. Participants 171,059 patients admitted between January 2001 and December 2006. Measurements The analysis is illustrated with 72 months of patient fall injury data using a modified Shewhart U control chart, and charts derived from a quasi-Poisson generalised linear model (GLM) and a generalised additive mixed model (GAMM) that included an approximate upper control limit. Results The data were overdispersed and displayed a downward trend and possible autocorrelation. The downward trend was followed by a predictable period after December 2003. The GLM-estimated incidence rate ratio was 0.98 (95% CI 0.98 to 0.99) per month. The GAMM-fitted count fell from 12.67 (95% CI 10.05 to 15.97) in January 2001 to 5.23 (95% CI 3.82 to 7.15) in December 2006 (p<0.001). The corresponding values for the GLM were 11.9 and 3.94. Residual plots suggested that the GLM underestimated the rate at the beginning and end of the series and overestimated it in the middle. The data suggested a more rapid rate fall before 2004 and a steady state thereafter, a pattern reflected in the GAMM chart. The approximate upper two-sigma equivalent control limit in the GLM and GAMM charts identified 2 months that showed possible special-cause variation. Conclusion Charts based on GAMM analysis are a suitable alternative to Shewhart U control charts with these data.
Resumo:
This paper provides a three-layered framework to monitor the positioning performance requirements of Real-time Relative Positioning (RRP) systems of the Cooperative Intelligent Transport Systems (C-ITS) that support Cooperative Collision Warning (CCW) applications. These applications exploit state data of surrounding vehicles obtained solely from the Global Positioning System (GPS) and Dedicated Short-Range Communications (DSRC) units without using other sensors. To this end, the paper argues the need for the GPS/DSRC-based RRP systems to have an autonomous monitoring mechanism, since the operation of CCW applications is meant to augment safety on roads. The advantages of autonomous integrity monitoring are essential and integral to any safety-of-life system. The autonomous integrity monitoring framework proposed necessitates the RRP systems to detect/predict the unavailability of their sub-systems and of the integrity monitoring module itself, and, if available, to account for effects of data link delays and breakages of DSRC links, as well as of faulty measurement sources of GPS and/or integrated augmentation positioning systems, before the information used for safety warnings/alarms becomes unavailable, unreliable, inaccurate or misleading. Hence, a monitoring framework using a tight integration and correlation approach is proposed for instantaneous reliability assessment of the RRP systems. Ultimately, using the proposed framework, the RRP systems will provide timely alerts to users when the RRP solutions cannot be trusted or used for the intended operation.