937 resultados para Batch injection analysis
Resumo:
We have employed an inverse engineering strategy based on quantitative proteome analysis to identify changes in intracellular protein abundance that correlate with increased specific recombinant monoclonal antibody production (qMab) by engineered murine myeloma (NSO) cells. Four homogeneous NSO cell lines differing in qMab were isolated from a pool of primary transfectants. The proteome of each stably transfected cell line was analyzed at mid-exponential growth phase by two-dimensional gel electrophoresis (2D-PAGE) and individual protein spot volume data derived from digitized gel images were compared statistically. To identify changes in protein abundance associated with qMab clatasets were screened for proteins that exhibited either a linear correlation with cell line qMab or a conserved change in abundance specific only to the cell line with highest qMab. Several proteins with altered abundance were identified by mass spectrometry. Proteins exhibiting a significant increase in abundance with increasing qMab included molecular chaperones known to interact directly with nascent immunoglobulins during their folding and assembly (e.g., BiP, endoplasmin, protein disulfide isomerase). 2D-PAGE analysis showed that in all cell lines Mab light chain was more abundant than heavy chain, indicating that this is a likely prerequisite for efficient Mab production. In summary, these data reveal both the adaptive responses and molecular mechanisms enabling mammalian cells in culture to achieve high-level recombinant monoclonal antibody production. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Tannerella forsythia has been implicated as a defined periodontal pathogen. In the present study a mouse model was used to determine the phenotype of leukocytes in the lesions induced by subcutaneous injections of either live (group A) or nonviable (group B) T. forsythia. Control mice (group C) received the vehicle only. Lesions were excised at days 1, 2, 4, and 7. An avidin-biotin immunoperoxidase method was used to stain infiltrating CD4(+) and CD8(+) T cells, CD14(+) macrophages, CD19(+) B cells, and neutrophils. Hematoxylin and eosin sections demonstrated lesions with central necrotic cores surrounded by neutrophils, macrophages and lymphocytes in both group A and group B mice. Lesions from control mice exhibited no or only occasional solitary leukocytes. In both groups A and B, neutrophils were the dominant leukocyte in the lesion 1 day after injection, the numbers decreasing over the 7-day experimental period. There was a relatively low mean percent of CD4(+) and CD8(+) T cells in the lesions and, whereas the percent of CD8(+) T cells remained constant, there was a significant increase in the percent of CD4(+) T cells at day 7. This increase was more evident in group A mice. The mean percent of CD14(+) macrophages and CD19(+) B cells remained low over the experimental period, although there was a significantly higher mean percent of CD19(+) B cells at day 1. In conclusion, the results showed that immunization of mice with live T. forsythia induced a stronger immune response than nonviable organisms. The inflammatory response presented as a nonspecific immune response with evidence of an adaptive (T-cell) response by day 7. Unlike Porphyromonas gingivalis, there was no inhibition of neutrophil migration.
Resumo:
A denitrifying microbial consortium was enriched in an anoxically operated, methanol-fed sequencing batch reactor (SBR) fed with a mineral salts medium containing methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was inoculated with sludge from a biological nutrient removal activated sludge plant exhibiting good denitrification. The SBR denitrification rate improved from less than 0.02 mg of NO3-.N mg of mixed-liquor volatile suspended solids (MLVSS)(-1) h(-1) to a steady-state value of 0.06 mg of NO3-.N mg of MLVSS-1 h(-1) over a 7-month operational period. At this time, the enriched microbial community was subjected to stable-isotope probing (SIP) with [C-13] methanol to biomark the DNA of the denitrifiers. The extracted [C-13]DNA and [C-12]DNA from the SIP experiment were separately subjected to full-cycle rRNA analysis. The dominant 16S rRNA gene phylotype (group A clones) in the [C-13]DNA clone library was closely related to those of the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96 to 97% sequence identities), while the most abundant clone groups in the [C-12]DNA clone library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes for use in fluorescence in situ hybridization (FISH) were designed to specifically target the group A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes to the SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, there was no correlation between the denitrification rate and the relative abundances of the well-known denitrifying genera Hyphomicrobium and Paracoccus or the Saprospiraceae clones visualized by FISH in the SBR biomass. FISH combined with microautoradiography independently confirmed that the DEN67-targeted cells were the dominant bacterial group capable of anoxic [C-14] methanol uptake in the enriched biomass. The well-known denitrification lag period in the methanol-fed SBR was shown to coincide with a lag phase in growth of the DEN67-targeted denitrifying population. We conclude that Methylophilales bacteria are the dominant denitrifiers in our SBR system and likely are important denitrifiers in full-scale methanol-fed denitrifying sludges.
Resumo:
Listeria monocytogenes is a food-borne Gram-positive bacterium that is responsible for a variety of infections (worldwide) annually. The organism is able to survive a variety of environmental conditions and stresses, however, the mechanisms by which L. monocytogenes adapts to environmental change are yet to be fully elucidated. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. We have utilized a proteomic approach to investigate the response of L. monocytogenes batch cultures to the transition from exponential to stationary growth phase. Proteomic analysis showed that batch cultures of L. monocytogenes perceived stress and began preparations for stationary phase much earlier (approximately A(600) = 0.75, mid-exponential) than predicted by growth characteristics alone. Global analysis of the proteome revealed that the expression levels of more than 50% of all proteins observed changed significantly over a 7-9 h period during this transition phase. We have highlighted ten proteins in particular whose expression levels appear to be important in the early onset of the stationary phase. The significance of these findings in terms of functionality and the mechanistic picture are discussed.
Resumo:
The acetate-utilizing microbial consortium in a full-scale activated sludge process was investigated without prior enrichment using stable isotope probing (SIP). [C-13]acetate was used in SIP to label the DNA of the denitrifiers. The [C-13]DNA fraction that was extracted was subjected to a full-cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the C-13 library were closely related to the bacterial families Comamonadaceae and Rhodocyclaceae in the class Betaproteobacteria. Seven oligonucleotide probes for use in fluorescent in situ hybridization (FISH) were designed to specifically target these clones. Application of these probes to the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated for 16 days revealed that there was a significant positive correlation between the CFDSBR denitrification rate and the relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH-microautoradiography demonstrated that the DEN581 and DEN124 probe-targeted cells that dominated the CFDSBR were capable of taking Up [C-14] acetate under anoxic conditions. Initially, DEN444 and DEN1454 probe-targeted bacteria also dominated the CFDSBR biomass, but eventually DEN581 and DEN124 probe-targeted bacteria were the dominant bacterial groups. All probe-targeted bacteria assessed in this study were denitrifiers capable of utilizing acetate as a source of carbon. The rapid increase in the number of organisms positively correlated with the immediate increase in denitrification rates observed by plant operators when acetate is used as an external source of carbon to enhance denitrification. We suggest that the impact of bacteria on activated sludge subjected to intermittent acetate supplementation should be assessed prior to the widespread use of acetate in the waste-water industry to enhance denitrification.
Resumo:
The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3) d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L-1. Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosonlonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The performance of a scramjet combustor with combined normal and tangential injection was experimentally investigated. Experiments were performed on a 500-mm cylindrical scramjet combustor at a freestream Mach number of 4.5, a nozzle supply pressure of 35.8 MPa, and a nozzle supply enthalpy of 5.8 MJ/kg. Hydrogen fuel was injected normally through portholes to promote combustion and tangentially through a slot to reduce viscous drag. A series of fuel injectors were used to vary the proportion of tangential to normal fuel between 45 and 100%. Reductions in the viscous drag of up to 25% were observed with the greatest reductions occurring at the lowest total equivalence ratio tested for each injector. However, the average pressure produced by combustion with combined normal and tangential injection was approximately 50% less than that produced by normal injection alone. An analysis of the change in specific impulse of the scramjet combustor indicated that the best overall performance was produced by 100% normal injection.
Inventory parameter management and focused continuous improvement for repetitive batch manufacturers
Resumo:
What this thesis proposes is a methodology to assist repetitive batch manufacturers in the adoption of certain aspects of the Lean Production principles. The methodology concentrates on the reduction of inventory through the setting of appropriate batch sizes, taking account of the effect of sequence dependent set-ups and the identification and elimination of bottlenecks. It uses a simple Pareto and modified EBQ based analysis technique to allocate items to period order day classes based on a combination of each item's annual usage value and set-up cost. The period order day classes the items are allocated to are determined by the constraints limits in the three measured dimensions, capacity, administration and finance. The methodology overcomes the limitations associated with MRP in the area of sequence dependent set-ups, and provides a simple way of setting planning parameters taking this effect into account by concentrating on the reduction of inventory through the systematic identification and elimination of bottlenecks through set-up reduction processes, so allowing batch sizes to reduce. It aims to help traditional repetitive batch manufacturers in a route to continual improvement by: Highlighting those areas where change would bring the greatest benefits. Modelling the effect of proposed changes. Quantifying the benefits that could be gained through implementing the proposed changes. Simplifying the effort required to perform the modelling process. It concentrates on increasing flexibility through managed inventory reduction through rationally decreasing batch sizes, taking account of sequence dependent set-ups and the identification and elimination of bottlenecks. This was achieved through the development of a software modelling tool, and validated through a case study approach.
Resumo:
Grafting of antioxidants and other modifiers onto polymers by reactive extrusion, has been performed successfully by the Polymer Processing and Performance Group at Aston University. Traditionally the optimum conditions for the grafting process have been established within a Brabender internal mixer. Transfer of this batch process to a continuous processor, such as an extruder, has, typically, been empirical. To have more confidence in the success of direct transfer of the process requires knowledge of, and comparison between, residence times, mixing intensities, shear rates and flow regimes in the internal mixer and in the continuous processor.The continuous processor chosen for the current work in the closely intermeshing, co-rotating twin-screw extruder (CICo-TSE). CICo-TSEs contain screw elements that convey material with a self-wiping action and are widely used for polymer compounding and blending. Of the different mixing modules contained within the CICo-TSE, the trilobal elements, which impose intensive mixing, and the mixing discs, which impose extensive mixing, are of importance when establishing the intensity of mixing. In this thesis, the flow patterns within the various regions of the single-flighted conveying screw elements and within both the trilobal element and mixing disc zones of a Betol BTS40 CICo-TSE, have been modelled using the computational fluid dynamics package Polyflow. A major obstacle encountered when solving the flow problem within all of these sets of elements, arises from both the complex geometry and the time-dependent flow boundaries as the elements rotate about their fixed axes. Simulation of the time dependent boundaries was overcome by selecting a number of sequential 2D and 3D geometries, used to represent partial mixing cycles. The flow fields were simulated using the ideal rheological properties of polypropylene and characterised in terms of velocity vectors, shear stresses generated and a parameter known as the mixing efficiency. The majority of the large 3D simulations were performed on the Cray J90 supercomputer situated at the Rutherford-Appleton laboratories, with pre- and postprocessing operations achieved via a Silicon Graphics Indy workstation. A mechanical model was constructed consisting of various CICo-TSE elements rotating within a transparent outer barrel. A technique has been developed using coloured viscous clays whereby the flow patterns and mixing characteristics within the CICo-TSE may be visualised. In order to test and verify the simulated predictions, the patterns observed within the mechanical model were compared with the flow patterns predicted by the computational model. The flow patterns within the single-flighted conveying screw elements in particular, showed good agreement between the experimental and simulated results.
Resumo:
The concept of a task is fundamental to the discipline of ergonomics. Approaches to the analysis of tasks began in the early 1900's. These approaches have evolved and developed to the present day, when there is a vast array of methods available. Some of these methods are specific to particular contexts or applications, others more general. However, whilst many of these analyses allow tasks to be examined in detail, they do not act as tools to aid the design process or the designer. The present thesis examines the use of task analysis in a process control context, and in particular the use of task analysis to specify operator information and display requirements in such systems. The first part of the thesis examines the theoretical aspect of task analysis and presents a review of the methods, issues and concepts relating to task analysis. A review of over 80 methods of task analysis was carried out to form a basis for the development of a task analysis method to specify operator information requirements in industrial process control contexts. Of the methods reviewed Hierarchical Task Analysis was selected to provide such a basis and developed to meet the criteria outlined for such a method of task analysis. The second section outlines the practical application and evolution of the developed task analysis method. Four case studies were used to examine the method in an empirical context. The case studies represent a range of plant contexts and types, both complex and more simple, batch and continuous and high risk and low risk processes. The theoretical and empirical issues are drawn together and a method developed to provide a task analysis technique to specify operator information requirements and to provide the first stages of a tool to aid the design of VDU displays for process control.
Resumo:
Operation of reverse osmosis (RO) in cyclic batch mode can in principle provide both high energy efficiency and high recovery. However, one factor that causes the performance to be less than ideal is longitudinal dispersion in the RO module. At the end of the batch pressurisation phase it is necessary to purge and then refill the module. During the purge and refill phases, dispersion causes undesirable mixing of concentrated brine with less concentrated feed water, therefore increasing the salt concentration and energy usage in the subsequent pressurisation phase of the cycle. In this study, we quantify the significance of dispersion through theory and experiment. We provide an analysis that relates the energy efficiency of the batch operation to the amount of dispersion. With the help of a model based on the analysis by Taylor, dispersion is quantified according to flow rate. The model is confirmed by experiments with two types of proprietary spiral wound RO modules, using sodium chloride (NaCl) solutions of concentration 1000 to 20,000 ppm. In practice the typical energy usage increases by 4% to 5.5% compared to the ideal case of zero dispersion.
Resumo:
Disclosed is a fluid sampling apparatus (12). The apparatus has a sample inlet port (14) in communication with a fluid space (10) containing the fluid to be sampled. An analysis port (16) is provided for communication with an analysis device such as a mass spectrometer. A dilution gas injection port (22) is provided to dilute fluid is sampled from the fluid space via the sample inlet port. The diluted sample fluid is then conducted to the analysis port. The sampling apparatus is intended particularly for use in analysing biomass pyrolysis processes.
Resumo:
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.
Resumo:
Diazotrophic (N2-fixing) cyanobacteria provide the biological source of new nitrogen for large parts of the ocean. However, little is known about their sensitivity to global change. Here we show that the single most important nitrogen fixer in today's ocean, Trichodesmium, is strongly affected by changes in CO2 concentrations. Cell division rate doubled with rising CO2 (glacial to projected year 2100 levels) prompting lower carbon, nitrogen and phosphorus cellular contents, and reduced cell dimensions. N2 fixation rates per unit of phosphorus utilization as well as C:P and N:P ratios more than doubled at high CO2, with no change in C:N ratios. This could enhance the productivity of N-limited oligotrophic oceans, drive some of these areas into P limitation, and increase biological carbon sequestration in the ocean. The observed CO2 sensitivity of Trichodesmium could thereby provide a strong negative feedback to atmospheric CO2 increase.